This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A subtraction law: Exchanging the subtrahend and the result of the subtraction. (Contributed by BJ, 6-Jun-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | addlsub.a | ⊢ ( 𝜑 → 𝐴 ∈ ℂ ) | |
| addlsub.b | ⊢ ( 𝜑 → 𝐵 ∈ ℂ ) | ||
| addlsub.c | ⊢ ( 𝜑 → 𝐶 ∈ ℂ ) | ||
| Assertion | subexsub | ⊢ ( 𝜑 → ( 𝐴 = ( 𝐶 − 𝐵 ) ↔ 𝐵 = ( 𝐶 − 𝐴 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | addlsub.a | ⊢ ( 𝜑 → 𝐴 ∈ ℂ ) | |
| 2 | addlsub.b | ⊢ ( 𝜑 → 𝐵 ∈ ℂ ) | |
| 3 | addlsub.c | ⊢ ( 𝜑 → 𝐶 ∈ ℂ ) | |
| 4 | 1 2 3 | addlsub | ⊢ ( 𝜑 → ( ( 𝐴 + 𝐵 ) = 𝐶 ↔ 𝐴 = ( 𝐶 − 𝐵 ) ) ) |
| 5 | 1 2 3 | addrsub | ⊢ ( 𝜑 → ( ( 𝐴 + 𝐵 ) = 𝐶 ↔ 𝐵 = ( 𝐶 − 𝐴 ) ) ) |
| 6 | 4 5 | bitr3d | ⊢ ( 𝜑 → ( 𝐴 = ( 𝐶 − 𝐵 ) ↔ 𝐵 = ( 𝐶 − 𝐴 ) ) ) |