This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Reverse the order of subtraction in an equality. (Contributed by Scott Fenton, 8-Jul-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | subeqrev | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ) → ( ( 𝐴 − 𝐵 ) = ( 𝐶 − 𝐷 ) ↔ ( 𝐵 − 𝐴 ) = ( 𝐷 − 𝐶 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subcl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 − 𝐵 ) ∈ ℂ ) | |
| 2 | subcl | ⊢ ( ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) → ( 𝐶 − 𝐷 ) ∈ ℂ ) | |
| 3 | neg11 | ⊢ ( ( ( 𝐴 − 𝐵 ) ∈ ℂ ∧ ( 𝐶 − 𝐷 ) ∈ ℂ ) → ( - ( 𝐴 − 𝐵 ) = - ( 𝐶 − 𝐷 ) ↔ ( 𝐴 − 𝐵 ) = ( 𝐶 − 𝐷 ) ) ) | |
| 4 | 1 2 3 | syl2an | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ) → ( - ( 𝐴 − 𝐵 ) = - ( 𝐶 − 𝐷 ) ↔ ( 𝐴 − 𝐵 ) = ( 𝐶 − 𝐷 ) ) ) |
| 5 | negsubdi2 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → - ( 𝐴 − 𝐵 ) = ( 𝐵 − 𝐴 ) ) | |
| 6 | negsubdi2 | ⊢ ( ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) → - ( 𝐶 − 𝐷 ) = ( 𝐷 − 𝐶 ) ) | |
| 7 | 5 6 | eqeqan12d | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ) → ( - ( 𝐴 − 𝐵 ) = - ( 𝐶 − 𝐷 ) ↔ ( 𝐵 − 𝐴 ) = ( 𝐷 − 𝐶 ) ) ) |
| 8 | 4 7 | bitr3d | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ) → ( ( 𝐴 − 𝐵 ) = ( 𝐶 − 𝐷 ) ↔ ( 𝐵 − 𝐴 ) = ( 𝐷 − 𝐶 ) ) ) |