This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Reverse the order of subtraction in an equality. (Contributed by Scott Fenton, 8-Jul-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | subeqrev | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( ( A - B ) = ( C - D ) <-> ( B - A ) = ( D - C ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subcl | |- ( ( A e. CC /\ B e. CC ) -> ( A - B ) e. CC ) |
|
| 2 | subcl | |- ( ( C e. CC /\ D e. CC ) -> ( C - D ) e. CC ) |
|
| 3 | neg11 | |- ( ( ( A - B ) e. CC /\ ( C - D ) e. CC ) -> ( -u ( A - B ) = -u ( C - D ) <-> ( A - B ) = ( C - D ) ) ) |
|
| 4 | 1 2 3 | syl2an | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( -u ( A - B ) = -u ( C - D ) <-> ( A - B ) = ( C - D ) ) ) |
| 5 | negsubdi2 | |- ( ( A e. CC /\ B e. CC ) -> -u ( A - B ) = ( B - A ) ) |
|
| 6 | negsubdi2 | |- ( ( C e. CC /\ D e. CC ) -> -u ( C - D ) = ( D - C ) ) |
|
| 7 | 5 6 | eqeqan12d | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( -u ( A - B ) = -u ( C - D ) <-> ( B - A ) = ( D - C ) ) ) |
| 8 | 4 7 | bitr3d | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( ( A - B ) = ( C - D ) <-> ( B - A ) = ( D - C ) ) ) |