This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Union
Ordinals (continued)
ssonuni
Metamath Proof Explorer
Description: The union of a set of ordinal numbers is an ordinal number. Theorem 9 of
Suppes p. 132. Lemma 2.7 of Schloeder p. 4. (Contributed by NM , 1-Nov-2003)
Ref
Expression
Assertion
ssonuni
⊢ A ∈ V → A ⊆ On → ⋃ A ∈ On
Proof
Step
Hyp
Ref
Expression
1
ssorduni
⊢ A ⊆ On → Ord ⁡ ⋃ A
2
uniexg
⊢ A ∈ V → ⋃ A ∈ V
3
elong
⊢ ⋃ A ∈ V → ⋃ A ∈ On ↔ Ord ⁡ ⋃ A
4
2 3
syl
⊢ A ∈ V → ⋃ A ∈ On ↔ Ord ⁡ ⋃ A
5
1 4
imbitrrid
⊢ A ∈ V → A ⊆ On → ⋃ A ∈ On