This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Specialization. Lemma 8 of KalishMontague p. 87. Uses only Tarski's FOL axiom schemes. (Contributed by NM, 19-Apr-2017) (Proof shortened by Wolf Lammen, 7-Aug-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | spimw.1 | ⊢ ( ¬ 𝜓 → ∀ 𝑥 ¬ 𝜓 ) | |
| spimw.2 | ⊢ ( 𝑥 = 𝑦 → ( 𝜑 → 𝜓 ) ) | ||
| Assertion | spimw | ⊢ ( ∀ 𝑥 𝜑 → 𝜓 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | spimw.1 | ⊢ ( ¬ 𝜓 → ∀ 𝑥 ¬ 𝜓 ) | |
| 2 | spimw.2 | ⊢ ( 𝑥 = 𝑦 → ( 𝜑 → 𝜓 ) ) | |
| 3 | ax6v | ⊢ ¬ ∀ 𝑥 ¬ 𝑥 = 𝑦 | |
| 4 | 1 2 | spimfw | ⊢ ( ¬ ∀ 𝑥 ¬ 𝑥 = 𝑦 → ( ∀ 𝑥 𝜑 → 𝜓 ) ) |
| 5 | 3 4 | ax-mp | ⊢ ( ∀ 𝑥 𝜑 → 𝜓 ) |