This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Existential introduction, using implicit substitution. Compare Lemma 14 of Tarski p. 70. (Contributed by NM, 7-Aug-1994) (Proof shortened by Wolf Lammen, 22-Oct-2023)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | spimew.1 | ⊢ ( 𝜑 → ∀ 𝑥 𝜑 ) | |
| spimew.2 | ⊢ ( 𝑥 = 𝑦 → ( 𝜑 → 𝜓 ) ) | ||
| Assertion | spimew | ⊢ ( 𝜑 → ∃ 𝑥 𝜓 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | spimew.1 | ⊢ ( 𝜑 → ∀ 𝑥 𝜑 ) | |
| 2 | spimew.2 | ⊢ ( 𝑥 = 𝑦 → ( 𝜑 → 𝜓 ) ) | |
| 3 | ax6v | ⊢ ¬ ∀ 𝑥 ¬ 𝑥 = 𝑦 | |
| 4 | 2 | speimfw | ⊢ ( ¬ ∀ 𝑥 ¬ 𝑥 = 𝑦 → ( ∀ 𝑥 𝜑 → ∃ 𝑥 𝜓 ) ) |
| 5 | 3 1 4 | mpsyl | ⊢ ( 𝜑 → ∃ 𝑥 𝜓 ) |