This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Weak version of sp . Uses only Tarski's FOL axiom schemes. Lemma 9 of KalishMontague p. 87. This may be the best we can do with minimal distinct variable conditions. (Contributed by NM, 19-Apr-2017) (Proof shortened by Wolf Lammen, 10-Oct-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | spfw.1 | ⊢ ( ¬ 𝜓 → ∀ 𝑥 ¬ 𝜓 ) | |
| spfw.2 | ⊢ ( ∀ 𝑥 𝜑 → ∀ 𝑦 ∀ 𝑥 𝜑 ) | ||
| spfw.3 | ⊢ ( ¬ 𝜑 → ∀ 𝑦 ¬ 𝜑 ) | ||
| spfw.4 | ⊢ ( 𝑥 = 𝑦 → ( 𝜑 ↔ 𝜓 ) ) | ||
| Assertion | spfw | ⊢ ( ∀ 𝑥 𝜑 → 𝜑 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | spfw.1 | ⊢ ( ¬ 𝜓 → ∀ 𝑥 ¬ 𝜓 ) | |
| 2 | spfw.2 | ⊢ ( ∀ 𝑥 𝜑 → ∀ 𝑦 ∀ 𝑥 𝜑 ) | |
| 3 | spfw.3 | ⊢ ( ¬ 𝜑 → ∀ 𝑦 ¬ 𝜑 ) | |
| 4 | spfw.4 | ⊢ ( 𝑥 = 𝑦 → ( 𝜑 ↔ 𝜓 ) ) | |
| 5 | 4 | biimpd | ⊢ ( 𝑥 = 𝑦 → ( 𝜑 → 𝜓 ) ) |
| 6 | 2 1 5 | cbvaliw | ⊢ ( ∀ 𝑥 𝜑 → ∀ 𝑦 𝜓 ) |
| 7 | 4 | biimprd | ⊢ ( 𝑥 = 𝑦 → ( 𝜓 → 𝜑 ) ) |
| 8 | 7 | equcoms | ⊢ ( 𝑦 = 𝑥 → ( 𝜓 → 𝜑 ) ) |
| 9 | 3 8 | spimw | ⊢ ( ∀ 𝑦 𝜓 → 𝜑 ) |
| 10 | 6 9 | syl | ⊢ ( ∀ 𝑥 𝜑 → 𝜑 ) |