This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Transitivity law for strict orderings, deduction form. (Contributed by Scott Fenton, 24-Nov-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | sotrd.1 | ⊢ ( 𝜑 → 𝑅 Or 𝐴 ) | |
| sotrd.2 | ⊢ ( 𝜑 → 𝑋 ∈ 𝐴 ) | ||
| sotrd.3 | ⊢ ( 𝜑 → 𝑌 ∈ 𝐴 ) | ||
| sotrd.4 | ⊢ ( 𝜑 → 𝑍 ∈ 𝐴 ) | ||
| sotrd.5 | ⊢ ( 𝜑 → 𝑋 𝑅 𝑌 ) | ||
| sotrd.6 | ⊢ ( 𝜑 → 𝑌 𝑅 𝑍 ) | ||
| Assertion | sotrd | ⊢ ( 𝜑 → 𝑋 𝑅 𝑍 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sotrd.1 | ⊢ ( 𝜑 → 𝑅 Or 𝐴 ) | |
| 2 | sotrd.2 | ⊢ ( 𝜑 → 𝑋 ∈ 𝐴 ) | |
| 3 | sotrd.3 | ⊢ ( 𝜑 → 𝑌 ∈ 𝐴 ) | |
| 4 | sotrd.4 | ⊢ ( 𝜑 → 𝑍 ∈ 𝐴 ) | |
| 5 | sotrd.5 | ⊢ ( 𝜑 → 𝑋 𝑅 𝑌 ) | |
| 6 | sotrd.6 | ⊢ ( 𝜑 → 𝑌 𝑅 𝑍 ) | |
| 7 | sotr | ⊢ ( ( 𝑅 Or 𝐴 ∧ ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ∧ 𝑍 ∈ 𝐴 ) ) → ( ( 𝑋 𝑅 𝑌 ∧ 𝑌 𝑅 𝑍 ) → 𝑋 𝑅 𝑍 ) ) | |
| 8 | 1 2 3 4 7 | syl13anc | ⊢ ( 𝜑 → ( ( 𝑋 𝑅 𝑌 ∧ 𝑌 𝑅 𝑍 ) → 𝑋 𝑅 𝑍 ) ) |
| 9 | 5 6 8 | mp2and | ⊢ ( 𝜑 → 𝑋 𝑅 𝑍 ) |