This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two subspaces are zero iff their join is zero. (Contributed by NM, 7-Aug-2004) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | shne0.1 | ⊢ 𝐴 ∈ Sℋ | |
| shs00.2 | ⊢ 𝐵 ∈ Sℋ | ||
| Assertion | shs00i | ⊢ ( ( 𝐴 = 0ℋ ∧ 𝐵 = 0ℋ ) ↔ ( 𝐴 +ℋ 𝐵 ) = 0ℋ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | shne0.1 | ⊢ 𝐴 ∈ Sℋ | |
| 2 | shs00.2 | ⊢ 𝐵 ∈ Sℋ | |
| 3 | oveq12 | ⊢ ( ( 𝐴 = 0ℋ ∧ 𝐵 = 0ℋ ) → ( 𝐴 +ℋ 𝐵 ) = ( 0ℋ +ℋ 0ℋ ) ) | |
| 4 | h0elsh | ⊢ 0ℋ ∈ Sℋ | |
| 5 | 4 | shs0i | ⊢ ( 0ℋ +ℋ 0ℋ ) = 0ℋ |
| 6 | 3 5 | eqtrdi | ⊢ ( ( 𝐴 = 0ℋ ∧ 𝐵 = 0ℋ ) → ( 𝐴 +ℋ 𝐵 ) = 0ℋ ) |
| 7 | 1 2 | shsub1i | ⊢ 𝐴 ⊆ ( 𝐴 +ℋ 𝐵 ) |
| 8 | sseq2 | ⊢ ( ( 𝐴 +ℋ 𝐵 ) = 0ℋ → ( 𝐴 ⊆ ( 𝐴 +ℋ 𝐵 ) ↔ 𝐴 ⊆ 0ℋ ) ) | |
| 9 | 7 8 | mpbii | ⊢ ( ( 𝐴 +ℋ 𝐵 ) = 0ℋ → 𝐴 ⊆ 0ℋ ) |
| 10 | shle0 | ⊢ ( 𝐴 ∈ Sℋ → ( 𝐴 ⊆ 0ℋ ↔ 𝐴 = 0ℋ ) ) | |
| 11 | 1 10 | ax-mp | ⊢ ( 𝐴 ⊆ 0ℋ ↔ 𝐴 = 0ℋ ) |
| 12 | 9 11 | sylib | ⊢ ( ( 𝐴 +ℋ 𝐵 ) = 0ℋ → 𝐴 = 0ℋ ) |
| 13 | 2 1 | shsub2i | ⊢ 𝐵 ⊆ ( 𝐴 +ℋ 𝐵 ) |
| 14 | sseq2 | ⊢ ( ( 𝐴 +ℋ 𝐵 ) = 0ℋ → ( 𝐵 ⊆ ( 𝐴 +ℋ 𝐵 ) ↔ 𝐵 ⊆ 0ℋ ) ) | |
| 15 | 13 14 | mpbii | ⊢ ( ( 𝐴 +ℋ 𝐵 ) = 0ℋ → 𝐵 ⊆ 0ℋ ) |
| 16 | shle0 | ⊢ ( 𝐵 ∈ Sℋ → ( 𝐵 ⊆ 0ℋ ↔ 𝐵 = 0ℋ ) ) | |
| 17 | 2 16 | ax-mp | ⊢ ( 𝐵 ⊆ 0ℋ ↔ 𝐵 = 0ℋ ) |
| 18 | 15 17 | sylib | ⊢ ( ( 𝐴 +ℋ 𝐵 ) = 0ℋ → 𝐵 = 0ℋ ) |
| 19 | 12 18 | jca | ⊢ ( ( 𝐴 +ℋ 𝐵 ) = 0ℋ → ( 𝐴 = 0ℋ ∧ 𝐵 = 0ℋ ) ) |
| 20 | 6 19 | impbii | ⊢ ( ( 𝐴 = 0ℋ ∧ 𝐵 = 0ℋ ) ↔ ( 𝐴 +ℋ 𝐵 ) = 0ℋ ) |