This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two subspaces are zero iff their join is zero. (Contributed by NM, 7-Aug-2004) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | shne0.1 | |- A e. SH |
|
| shs00.2 | |- B e. SH |
||
| Assertion | shs00i | |- ( ( A = 0H /\ B = 0H ) <-> ( A +H B ) = 0H ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | shne0.1 | |- A e. SH |
|
| 2 | shs00.2 | |- B e. SH |
|
| 3 | oveq12 | |- ( ( A = 0H /\ B = 0H ) -> ( A +H B ) = ( 0H +H 0H ) ) |
|
| 4 | h0elsh | |- 0H e. SH |
|
| 5 | 4 | shs0i | |- ( 0H +H 0H ) = 0H |
| 6 | 3 5 | eqtrdi | |- ( ( A = 0H /\ B = 0H ) -> ( A +H B ) = 0H ) |
| 7 | 1 2 | shsub1i | |- A C_ ( A +H B ) |
| 8 | sseq2 | |- ( ( A +H B ) = 0H -> ( A C_ ( A +H B ) <-> A C_ 0H ) ) |
|
| 9 | 7 8 | mpbii | |- ( ( A +H B ) = 0H -> A C_ 0H ) |
| 10 | shle0 | |- ( A e. SH -> ( A C_ 0H <-> A = 0H ) ) |
|
| 11 | 1 10 | ax-mp | |- ( A C_ 0H <-> A = 0H ) |
| 12 | 9 11 | sylib | |- ( ( A +H B ) = 0H -> A = 0H ) |
| 13 | 2 1 | shsub2i | |- B C_ ( A +H B ) |
| 14 | sseq2 | |- ( ( A +H B ) = 0H -> ( B C_ ( A +H B ) <-> B C_ 0H ) ) |
|
| 15 | 13 14 | mpbii | |- ( ( A +H B ) = 0H -> B C_ 0H ) |
| 16 | shle0 | |- ( B e. SH -> ( B C_ 0H <-> B = 0H ) ) |
|
| 17 | 2 16 | ax-mp | |- ( B C_ 0H <-> B = 0H ) |
| 18 | 15 17 | sylib | |- ( ( A +H B ) = 0H -> B = 0H ) |
| 19 | 12 18 | jca | |- ( ( A +H B ) = 0H -> ( A = 0H /\ B = 0H ) ) |
| 20 | 6 19 | impbii | |- ( ( A = 0H /\ B = 0H ) <-> ( A +H B ) = 0H ) |