This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Deduction version of sbcth . (Contributed by NM, 30-Nov-2005) (Proof shortened by Andrew Salmon, 8-Jun-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | sbcthdv.1 | ⊢ ( 𝜑 → 𝜓 ) | |
| Assertion | sbcthdv | ⊢ ( ( 𝜑 ∧ 𝐴 ∈ 𝑉 ) → [ 𝐴 / 𝑥 ] 𝜓 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbcthdv.1 | ⊢ ( 𝜑 → 𝜓 ) | |
| 2 | 1 | alrimiv | ⊢ ( 𝜑 → ∀ 𝑥 𝜓 ) |
| 3 | spsbc | ⊢ ( 𝐴 ∈ 𝑉 → ( ∀ 𝑥 𝜓 → [ 𝐴 / 𝑥 ] 𝜓 ) ) | |
| 4 | 2 3 | mpan9 | ⊢ ( ( 𝜑 ∧ 𝐴 ∈ 𝑉 ) → [ 𝐴 / 𝑥 ] 𝜓 ) |