This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A substitution into a theorem. (Contributed by NM, 1-Mar-2008) (Proof shortened by Mario Carneiro, 13-Oct-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | sbcth2.1 | ⊢ ( 𝑥 ∈ 𝐵 → 𝜑 ) | |
| Assertion | sbcth2 | ⊢ ( 𝐴 ∈ 𝐵 → [ 𝐴 / 𝑥 ] 𝜑 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbcth2.1 | ⊢ ( 𝑥 ∈ 𝐵 → 𝜑 ) | |
| 2 | 1 | rgen | ⊢ ∀ 𝑥 ∈ 𝐵 𝜑 |
| 3 | rspsbc | ⊢ ( 𝐴 ∈ 𝐵 → ( ∀ 𝑥 ∈ 𝐵 𝜑 → [ 𝐴 / 𝑥 ] 𝜑 ) ) | |
| 4 | 2 3 | mpi | ⊢ ( 𝐴 ∈ 𝐵 → [ 𝐴 / 𝑥 ] 𝜑 ) |