This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Nest the composition of two substitutions. Usage of this theorem is discouraged because it depends on ax-13 . Use the weaker sbcnestgw when possible. (Contributed by NM, 27-Nov-2005) (Proof shortened by Mario Carneiro, 11-Nov-2016) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sbcnestg | ⊢ ( 𝐴 ∈ 𝑉 → ( [ 𝐴 / 𝑥 ] [ 𝐵 / 𝑦 ] 𝜑 ↔ [ ⦋ 𝐴 / 𝑥 ⦌ 𝐵 / 𝑦 ] 𝜑 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv | ⊢ Ⅎ 𝑥 𝜑 | |
| 2 | 1 | ax-gen | ⊢ ∀ 𝑦 Ⅎ 𝑥 𝜑 |
| 3 | sbcnestgf | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ∀ 𝑦 Ⅎ 𝑥 𝜑 ) → ( [ 𝐴 / 𝑥 ] [ 𝐵 / 𝑦 ] 𝜑 ↔ [ ⦋ 𝐴 / 𝑥 ⦌ 𝐵 / 𝑦 ] 𝜑 ) ) | |
| 4 | 2 3 | mpan2 | ⊢ ( 𝐴 ∈ 𝑉 → ( [ 𝐴 / 𝑥 ] [ 𝐵 / 𝑦 ] 𝜑 ↔ [ ⦋ 𝐴 / 𝑥 ⦌ 𝐵 / 𝑦 ] 𝜑 ) ) |