This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Nest the composition of two substitutions. Usage of this theorem is discouraged because it depends on ax-13 . Use the weaker csbnestgw when possible. (Contributed by NM, 23-Nov-2005) (Proof shortened by Mario Carneiro, 10-Nov-2016) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | csbnestg | ⊢ ( 𝐴 ∈ 𝑉 → ⦋ 𝐴 / 𝑥 ⦌ ⦋ 𝐵 / 𝑦 ⦌ 𝐶 = ⦋ ⦋ 𝐴 / 𝑥 ⦌ 𝐵 / 𝑦 ⦌ 𝐶 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfcv | ⊢ Ⅎ 𝑥 𝐶 | |
| 2 | 1 | ax-gen | ⊢ ∀ 𝑦 Ⅎ 𝑥 𝐶 |
| 3 | csbnestgf | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ∀ 𝑦 Ⅎ 𝑥 𝐶 ) → ⦋ 𝐴 / 𝑥 ⦌ ⦋ 𝐵 / 𝑦 ⦌ 𝐶 = ⦋ ⦋ 𝐴 / 𝑥 ⦌ 𝐵 / 𝑦 ⦌ 𝐶 ) | |
| 4 | 2 3 | mpan2 | ⊢ ( 𝐴 ∈ 𝑉 → ⦋ 𝐴 / 𝑥 ⦌ ⦋ 𝐵 / 𝑦 ⦌ 𝐶 = ⦋ ⦋ 𝐴 / 𝑥 ⦌ 𝐵 / 𝑦 ⦌ 𝐶 ) |