This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Substitution analogue of Theorem 19.20 of Margaris p. 90 ( alim ). (Contributed by NM, 11-Nov-2005) (Revised by NM, 17-Aug-2018) (Proof shortened by JJ, 7-Jul-2021) Reduce axiom usage. (Revised by GG, 12-Oct-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | sbcimdv.1 | ⊢ ( 𝜑 → ( 𝜓 → 𝜒 ) ) | |
| Assertion | sbcimdv | ⊢ ( 𝜑 → ( [ 𝐴 / 𝑥 ] 𝜓 → [ 𝐴 / 𝑥 ] 𝜒 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbcimdv.1 | ⊢ ( 𝜑 → ( 𝜓 → 𝜒 ) ) | |
| 2 | df-sbc | ⊢ ( [ 𝐴 / 𝑥 ] 𝜓 ↔ 𝐴 ∈ { 𝑥 ∣ 𝜓 } ) | |
| 3 | dfclel | ⊢ ( 𝐴 ∈ { 𝑥 ∣ 𝜓 } ↔ ∃ 𝑦 ( 𝑦 = 𝐴 ∧ 𝑦 ∈ { 𝑥 ∣ 𝜓 } ) ) | |
| 4 | df-clab | ⊢ ( 𝑦 ∈ { 𝑥 ∣ 𝜓 } ↔ [ 𝑦 / 𝑥 ] 𝜓 ) | |
| 5 | 4 | anbi2i | ⊢ ( ( 𝑦 = 𝐴 ∧ 𝑦 ∈ { 𝑥 ∣ 𝜓 } ) ↔ ( 𝑦 = 𝐴 ∧ [ 𝑦 / 𝑥 ] 𝜓 ) ) |
| 6 | 5 | exbii | ⊢ ( ∃ 𝑦 ( 𝑦 = 𝐴 ∧ 𝑦 ∈ { 𝑥 ∣ 𝜓 } ) ↔ ∃ 𝑦 ( 𝑦 = 𝐴 ∧ [ 𝑦 / 𝑥 ] 𝜓 ) ) |
| 7 | 2 3 6 | 3bitri | ⊢ ( [ 𝐴 / 𝑥 ] 𝜓 ↔ ∃ 𝑦 ( 𝑦 = 𝐴 ∧ [ 𝑦 / 𝑥 ] 𝜓 ) ) |
| 8 | 7 | biimpi | ⊢ ( [ 𝐴 / 𝑥 ] 𝜓 → ∃ 𝑦 ( 𝑦 = 𝐴 ∧ [ 𝑦 / 𝑥 ] 𝜓 ) ) |
| 9 | 1 | sbimdv | ⊢ ( 𝜑 → ( [ 𝑦 / 𝑥 ] 𝜓 → [ 𝑦 / 𝑥 ] 𝜒 ) ) |
| 10 | 9 | anim2d | ⊢ ( 𝜑 → ( ( 𝑦 = 𝐴 ∧ [ 𝑦 / 𝑥 ] 𝜓 ) → ( 𝑦 = 𝐴 ∧ [ 𝑦 / 𝑥 ] 𝜒 ) ) ) |
| 11 | 10 | eximdv | ⊢ ( 𝜑 → ( ∃ 𝑦 ( 𝑦 = 𝐴 ∧ [ 𝑦 / 𝑥 ] 𝜓 ) → ∃ 𝑦 ( 𝑦 = 𝐴 ∧ [ 𝑦 / 𝑥 ] 𝜒 ) ) ) |
| 12 | df-sbc | ⊢ ( [ 𝐴 / 𝑥 ] 𝜒 ↔ 𝐴 ∈ { 𝑥 ∣ 𝜒 } ) | |
| 13 | dfclel | ⊢ ( 𝐴 ∈ { 𝑥 ∣ 𝜒 } ↔ ∃ 𝑦 ( 𝑦 = 𝐴 ∧ 𝑦 ∈ { 𝑥 ∣ 𝜒 } ) ) | |
| 14 | df-clab | ⊢ ( 𝑦 ∈ { 𝑥 ∣ 𝜒 } ↔ [ 𝑦 / 𝑥 ] 𝜒 ) | |
| 15 | 14 | anbi2i | ⊢ ( ( 𝑦 = 𝐴 ∧ 𝑦 ∈ { 𝑥 ∣ 𝜒 } ) ↔ ( 𝑦 = 𝐴 ∧ [ 𝑦 / 𝑥 ] 𝜒 ) ) |
| 16 | 15 | exbii | ⊢ ( ∃ 𝑦 ( 𝑦 = 𝐴 ∧ 𝑦 ∈ { 𝑥 ∣ 𝜒 } ) ↔ ∃ 𝑦 ( 𝑦 = 𝐴 ∧ [ 𝑦 / 𝑥 ] 𝜒 ) ) |
| 17 | 12 13 16 | 3bitrri | ⊢ ( ∃ 𝑦 ( 𝑦 = 𝐴 ∧ [ 𝑦 / 𝑥 ] 𝜒 ) ↔ [ 𝐴 / 𝑥 ] 𝜒 ) |
| 18 | 17 | biimpi | ⊢ ( ∃ 𝑦 ( 𝑦 = 𝐴 ∧ [ 𝑦 / 𝑥 ] 𝜒 ) → [ 𝐴 / 𝑥 ] 𝜒 ) |
| 19 | 8 11 18 | syl56 | ⊢ ( 𝜑 → ( [ 𝐴 / 𝑥 ] 𝜓 → [ 𝐴 / 𝑥 ] 𝜒 ) ) |