This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Substitution analogue of Theorem 19.20 of Margaris p. 90 ( alim ). (Contributed by NM, 11-Nov-2005) (Revised by NM, 17-Aug-2018) (Proof shortened by JJ, 7-Jul-2021) Reduce axiom usage. (Revised by GG, 12-Oct-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | sbcimdv.1 | |- ( ph -> ( ps -> ch ) ) |
|
| Assertion | sbcimdv | |- ( ph -> ( [. A / x ]. ps -> [. A / x ]. ch ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbcimdv.1 | |- ( ph -> ( ps -> ch ) ) |
|
| 2 | df-sbc | |- ( [. A / x ]. ps <-> A e. { x | ps } ) |
|
| 3 | dfclel | |- ( A e. { x | ps } <-> E. y ( y = A /\ y e. { x | ps } ) ) |
|
| 4 | df-clab | |- ( y e. { x | ps } <-> [ y / x ] ps ) |
|
| 5 | 4 | anbi2i | |- ( ( y = A /\ y e. { x | ps } ) <-> ( y = A /\ [ y / x ] ps ) ) |
| 6 | 5 | exbii | |- ( E. y ( y = A /\ y e. { x | ps } ) <-> E. y ( y = A /\ [ y / x ] ps ) ) |
| 7 | 2 3 6 | 3bitri | |- ( [. A / x ]. ps <-> E. y ( y = A /\ [ y / x ] ps ) ) |
| 8 | 7 | biimpi | |- ( [. A / x ]. ps -> E. y ( y = A /\ [ y / x ] ps ) ) |
| 9 | 1 | sbimdv | |- ( ph -> ( [ y / x ] ps -> [ y / x ] ch ) ) |
| 10 | 9 | anim2d | |- ( ph -> ( ( y = A /\ [ y / x ] ps ) -> ( y = A /\ [ y / x ] ch ) ) ) |
| 11 | 10 | eximdv | |- ( ph -> ( E. y ( y = A /\ [ y / x ] ps ) -> E. y ( y = A /\ [ y / x ] ch ) ) ) |
| 12 | df-sbc | |- ( [. A / x ]. ch <-> A e. { x | ch } ) |
|
| 13 | dfclel | |- ( A e. { x | ch } <-> E. y ( y = A /\ y e. { x | ch } ) ) |
|
| 14 | df-clab | |- ( y e. { x | ch } <-> [ y / x ] ch ) |
|
| 15 | 14 | anbi2i | |- ( ( y = A /\ y e. { x | ch } ) <-> ( y = A /\ [ y / x ] ch ) ) |
| 16 | 15 | exbii | |- ( E. y ( y = A /\ y e. { x | ch } ) <-> E. y ( y = A /\ [ y / x ] ch ) ) |
| 17 | 12 13 16 | 3bitrri | |- ( E. y ( y = A /\ [ y / x ] ch ) <-> [. A / x ]. ch ) |
| 18 | 17 | biimpi | |- ( E. y ( y = A /\ [ y / x ] ch ) -> [. A / x ]. ch ) |
| 19 | 8 11 18 | syl56 | |- ( ph -> ( [. A / x ]. ps -> [. A / x ]. ch ) ) |