This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Distribution of class substitution over a left-nested implication. Similar to sbcimg . sbcim2g is sbcim2gVD without virtual deductions and was automatically derived from sbcim2gVD using the tools program translate..without..overwriting.cmd and Metamath's minimize command. (Contributed by Alan Sare, 18-Mar-2012) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sbcim2g | ⊢ ( 𝐴 ∈ 𝑉 → ( [ 𝐴 / 𝑥 ] ( 𝜑 → ( 𝜓 → 𝜒 ) ) ↔ ( [ 𝐴 / 𝑥 ] 𝜑 → ( [ 𝐴 / 𝑥 ] 𝜓 → [ 𝐴 / 𝑥 ] 𝜒 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbcimg | ⊢ ( 𝐴 ∈ 𝑉 → ( [ 𝐴 / 𝑥 ] ( 𝜑 → ( 𝜓 → 𝜒 ) ) ↔ ( [ 𝐴 / 𝑥 ] 𝜑 → [ 𝐴 / 𝑥 ] ( 𝜓 → 𝜒 ) ) ) ) | |
| 2 | 1 | biimpd | ⊢ ( 𝐴 ∈ 𝑉 → ( [ 𝐴 / 𝑥 ] ( 𝜑 → ( 𝜓 → 𝜒 ) ) → ( [ 𝐴 / 𝑥 ] 𝜑 → [ 𝐴 / 𝑥 ] ( 𝜓 → 𝜒 ) ) ) ) |
| 3 | sbcimg | ⊢ ( 𝐴 ∈ 𝑉 → ( [ 𝐴 / 𝑥 ] ( 𝜓 → 𝜒 ) ↔ ( [ 𝐴 / 𝑥 ] 𝜓 → [ 𝐴 / 𝑥 ] 𝜒 ) ) ) | |
| 4 | imbi2 | ⊢ ( ( [ 𝐴 / 𝑥 ] ( 𝜓 → 𝜒 ) ↔ ( [ 𝐴 / 𝑥 ] 𝜓 → [ 𝐴 / 𝑥 ] 𝜒 ) ) → ( ( [ 𝐴 / 𝑥 ] 𝜑 → [ 𝐴 / 𝑥 ] ( 𝜓 → 𝜒 ) ) ↔ ( [ 𝐴 / 𝑥 ] 𝜑 → ( [ 𝐴 / 𝑥 ] 𝜓 → [ 𝐴 / 𝑥 ] 𝜒 ) ) ) ) | |
| 5 | 4 | biimpcd | ⊢ ( ( [ 𝐴 / 𝑥 ] 𝜑 → [ 𝐴 / 𝑥 ] ( 𝜓 → 𝜒 ) ) → ( ( [ 𝐴 / 𝑥 ] ( 𝜓 → 𝜒 ) ↔ ( [ 𝐴 / 𝑥 ] 𝜓 → [ 𝐴 / 𝑥 ] 𝜒 ) ) → ( [ 𝐴 / 𝑥 ] 𝜑 → ( [ 𝐴 / 𝑥 ] 𝜓 → [ 𝐴 / 𝑥 ] 𝜒 ) ) ) ) |
| 6 | 2 3 5 | syl6ci | ⊢ ( 𝐴 ∈ 𝑉 → ( [ 𝐴 / 𝑥 ] ( 𝜑 → ( 𝜓 → 𝜒 ) ) → ( [ 𝐴 / 𝑥 ] 𝜑 → ( [ 𝐴 / 𝑥 ] 𝜓 → [ 𝐴 / 𝑥 ] 𝜒 ) ) ) ) |
| 7 | idd | ⊢ ( 𝐴 ∈ 𝑉 → ( ( [ 𝐴 / 𝑥 ] 𝜑 → ( [ 𝐴 / 𝑥 ] 𝜓 → [ 𝐴 / 𝑥 ] 𝜒 ) ) → ( [ 𝐴 / 𝑥 ] 𝜑 → ( [ 𝐴 / 𝑥 ] 𝜓 → [ 𝐴 / 𝑥 ] 𝜒 ) ) ) ) | |
| 8 | biimpr | ⊢ ( ( [ 𝐴 / 𝑥 ] ( 𝜓 → 𝜒 ) ↔ ( [ 𝐴 / 𝑥 ] 𝜓 → [ 𝐴 / 𝑥 ] 𝜒 ) ) → ( ( [ 𝐴 / 𝑥 ] 𝜓 → [ 𝐴 / 𝑥 ] 𝜒 ) → [ 𝐴 / 𝑥 ] ( 𝜓 → 𝜒 ) ) ) | |
| 9 | 3 7 8 | ee13 | ⊢ ( 𝐴 ∈ 𝑉 → ( ( [ 𝐴 / 𝑥 ] 𝜑 → ( [ 𝐴 / 𝑥 ] 𝜓 → [ 𝐴 / 𝑥 ] 𝜒 ) ) → ( [ 𝐴 / 𝑥 ] 𝜑 → [ 𝐴 / 𝑥 ] ( 𝜓 → 𝜒 ) ) ) ) |
| 10 | 9 1 | sylibrd | ⊢ ( 𝐴 ∈ 𝑉 → ( ( [ 𝐴 / 𝑥 ] 𝜑 → ( [ 𝐴 / 𝑥 ] 𝜓 → [ 𝐴 / 𝑥 ] 𝜒 ) ) → [ 𝐴 / 𝑥 ] ( 𝜑 → ( 𝜓 → 𝜒 ) ) ) ) |
| 11 | 6 10 | impbid | ⊢ ( 𝐴 ∈ 𝑉 → ( [ 𝐴 / 𝑥 ] ( 𝜑 → ( 𝜓 → 𝜒 ) ) ↔ ( [ 𝐴 / 𝑥 ] 𝜑 → ( [ 𝐴 / 𝑥 ] 𝜓 → [ 𝐴 / 𝑥 ] 𝜒 ) ) ) ) |