This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Distribution of class substitution over a left-nested implication. Similar to sbcimg . sbcim2g is sbcim2gVD without virtual deductions and was automatically derived from sbcim2gVD using the tools program translate..without..overwriting.cmd and Metamath's minimize command. (Contributed by Alan Sare, 18-Mar-2012) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sbcim2g | |- ( A e. V -> ( [. A / x ]. ( ph -> ( ps -> ch ) ) <-> ( [. A / x ]. ph -> ( [. A / x ]. ps -> [. A / x ]. ch ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbcimg | |- ( A e. V -> ( [. A / x ]. ( ph -> ( ps -> ch ) ) <-> ( [. A / x ]. ph -> [. A / x ]. ( ps -> ch ) ) ) ) |
|
| 2 | 1 | biimpd | |- ( A e. V -> ( [. A / x ]. ( ph -> ( ps -> ch ) ) -> ( [. A / x ]. ph -> [. A / x ]. ( ps -> ch ) ) ) ) |
| 3 | sbcimg | |- ( A e. V -> ( [. A / x ]. ( ps -> ch ) <-> ( [. A / x ]. ps -> [. A / x ]. ch ) ) ) |
|
| 4 | imbi2 | |- ( ( [. A / x ]. ( ps -> ch ) <-> ( [. A / x ]. ps -> [. A / x ]. ch ) ) -> ( ( [. A / x ]. ph -> [. A / x ]. ( ps -> ch ) ) <-> ( [. A / x ]. ph -> ( [. A / x ]. ps -> [. A / x ]. ch ) ) ) ) |
|
| 5 | 4 | biimpcd | |- ( ( [. A / x ]. ph -> [. A / x ]. ( ps -> ch ) ) -> ( ( [. A / x ]. ( ps -> ch ) <-> ( [. A / x ]. ps -> [. A / x ]. ch ) ) -> ( [. A / x ]. ph -> ( [. A / x ]. ps -> [. A / x ]. ch ) ) ) ) |
| 6 | 2 3 5 | syl6ci | |- ( A e. V -> ( [. A / x ]. ( ph -> ( ps -> ch ) ) -> ( [. A / x ]. ph -> ( [. A / x ]. ps -> [. A / x ]. ch ) ) ) ) |
| 7 | idd | |- ( A e. V -> ( ( [. A / x ]. ph -> ( [. A / x ]. ps -> [. A / x ]. ch ) ) -> ( [. A / x ]. ph -> ( [. A / x ]. ps -> [. A / x ]. ch ) ) ) ) |
|
| 8 | biimpr | |- ( ( [. A / x ]. ( ps -> ch ) <-> ( [. A / x ]. ps -> [. A / x ]. ch ) ) -> ( ( [. A / x ]. ps -> [. A / x ]. ch ) -> [. A / x ]. ( ps -> ch ) ) ) |
|
| 9 | 3 7 8 | ee13 | |- ( A e. V -> ( ( [. A / x ]. ph -> ( [. A / x ]. ps -> [. A / x ]. ch ) ) -> ( [. A / x ]. ph -> [. A / x ]. ( ps -> ch ) ) ) ) |
| 10 | 9 1 | sylibrd | |- ( A e. V -> ( ( [. A / x ]. ph -> ( [. A / x ]. ps -> [. A / x ]. ch ) ) -> [. A / x ]. ( ph -> ( ps -> ch ) ) ) ) |
| 11 | 6 10 | impbid | |- ( A e. V -> ( [. A / x ]. ( ph -> ( ps -> ch ) ) <-> ( [. A / x ]. ph -> ( [. A / x ]. ps -> [. A / x ]. ch ) ) ) ) |