This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Deduction doubly substituting both sides of a biconditional. (Contributed by AV, 30-Jul-2023)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | sbbid.1 | ⊢ Ⅎ 𝑥 𝜑 | |
| sbbid.2 | ⊢ ( 𝜑 → ( 𝜓 ↔ 𝜒 ) ) | ||
| 2sbbid.1 | ⊢ Ⅎ 𝑦 𝜑 | ||
| Assertion | 2sbbid | ⊢ ( 𝜑 → ( [ 𝑡 / 𝑥 ] [ 𝑢 / 𝑦 ] 𝜓 ↔ [ 𝑡 / 𝑥 ] [ 𝑢 / 𝑦 ] 𝜒 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbbid.1 | ⊢ Ⅎ 𝑥 𝜑 | |
| 2 | sbbid.2 | ⊢ ( 𝜑 → ( 𝜓 ↔ 𝜒 ) ) | |
| 3 | 2sbbid.1 | ⊢ Ⅎ 𝑦 𝜑 | |
| 4 | 3 2 | sbbid | ⊢ ( 𝜑 → ( [ 𝑢 / 𝑦 ] 𝜓 ↔ [ 𝑢 / 𝑦 ] 𝜒 ) ) |
| 5 | 1 4 | sbbid | ⊢ ( 𝜑 → ( [ 𝑡 / 𝑥 ] [ 𝑢 / 𝑦 ] 𝜓 ↔ [ 𝑡 / 𝑥 ] [ 𝑢 / 𝑦 ] 𝜒 ) ) |