This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Commutation of quantification and substitution variables. Usage of this theorem is discouraged because it depends on ax-13 . (Contributed by NM, 5-Aug-1993) Allow a shortening of sb9i . (Revised by Wolf Lammen, 15-Jun-2019) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sb9 | ⊢ ( ∀ 𝑥 [ 𝑥 / 𝑦 ] 𝜑 ↔ ∀ 𝑦 [ 𝑦 / 𝑥 ] 𝜑 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbequ12a | ⊢ ( 𝑦 = 𝑥 → ( [ 𝑥 / 𝑦 ] 𝜑 ↔ [ 𝑦 / 𝑥 ] 𝜑 ) ) | |
| 2 | 1 | equcoms | ⊢ ( 𝑥 = 𝑦 → ( [ 𝑥 / 𝑦 ] 𝜑 ↔ [ 𝑦 / 𝑥 ] 𝜑 ) ) |
| 3 | 2 | sps | ⊢ ( ∀ 𝑥 𝑥 = 𝑦 → ( [ 𝑥 / 𝑦 ] 𝜑 ↔ [ 𝑦 / 𝑥 ] 𝜑 ) ) |
| 4 | 3 | dral1 | ⊢ ( ∀ 𝑥 𝑥 = 𝑦 → ( ∀ 𝑥 [ 𝑥 / 𝑦 ] 𝜑 ↔ ∀ 𝑦 [ 𝑦 / 𝑥 ] 𝜑 ) ) |
| 5 | nfnae | ⊢ Ⅎ 𝑥 ¬ ∀ 𝑥 𝑥 = 𝑦 | |
| 6 | nfnae | ⊢ Ⅎ 𝑦 ¬ ∀ 𝑥 𝑥 = 𝑦 | |
| 7 | nfsb2 | ⊢ ( ¬ ∀ 𝑦 𝑦 = 𝑥 → Ⅎ 𝑦 [ 𝑥 / 𝑦 ] 𝜑 ) | |
| 8 | 7 | naecoms | ⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → Ⅎ 𝑦 [ 𝑥 / 𝑦 ] 𝜑 ) |
| 9 | nfsb2 | ⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → Ⅎ 𝑥 [ 𝑦 / 𝑥 ] 𝜑 ) | |
| 10 | 2 | a1i | ⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ( 𝑥 = 𝑦 → ( [ 𝑥 / 𝑦 ] 𝜑 ↔ [ 𝑦 / 𝑥 ] 𝜑 ) ) ) |
| 11 | 5 6 8 9 10 | cbv2 | ⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ( ∀ 𝑥 [ 𝑥 / 𝑦 ] 𝜑 ↔ ∀ 𝑦 [ 𝑦 / 𝑥 ] 𝜑 ) ) |
| 12 | 4 11 | pm2.61i | ⊢ ( ∀ 𝑥 [ 𝑥 / 𝑦 ] 𝜑 ↔ ∀ 𝑦 [ 𝑦 / 𝑥 ] 𝜑 ) |