This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Commutation of quantification and substitution variables. Usage of this theorem is discouraged because it depends on ax-13 . (Contributed by NM, 5-Aug-1993) Allow a shortening of sb9i . (Revised by Wolf Lammen, 15-Jun-2019) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sb9 | |- ( A. x [ x / y ] ph <-> A. y [ y / x ] ph ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbequ12a | |- ( y = x -> ( [ x / y ] ph <-> [ y / x ] ph ) ) |
|
| 2 | 1 | equcoms | |- ( x = y -> ( [ x / y ] ph <-> [ y / x ] ph ) ) |
| 3 | 2 | sps | |- ( A. x x = y -> ( [ x / y ] ph <-> [ y / x ] ph ) ) |
| 4 | 3 | dral1 | |- ( A. x x = y -> ( A. x [ x / y ] ph <-> A. y [ y / x ] ph ) ) |
| 5 | nfnae | |- F/ x -. A. x x = y |
|
| 6 | nfnae | |- F/ y -. A. x x = y |
|
| 7 | nfsb2 | |- ( -. A. y y = x -> F/ y [ x / y ] ph ) |
|
| 8 | 7 | naecoms | |- ( -. A. x x = y -> F/ y [ x / y ] ph ) |
| 9 | nfsb2 | |- ( -. A. x x = y -> F/ x [ y / x ] ph ) |
|
| 10 | 2 | a1i | |- ( -. A. x x = y -> ( x = y -> ( [ x / y ] ph <-> [ y / x ] ph ) ) ) |
| 11 | 5 6 8 9 10 | cbv2 | |- ( -. A. x x = y -> ( A. x [ x / y ] ph <-> A. y [ y / x ] ph ) ) |
| 12 | 4 11 | pm2.61i | |- ( A. x [ x / y ] ph <-> A. y [ y / x ] ph ) |