This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The satisfaction predicate for wff codes in the model M and the binary relation E on M is a function over suc _om . (Contributed by AV, 6-Oct-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | satfn | ⊢ ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) → ( 𝑀 Sat 𝐸 ) Fn suc ω ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rdgfnon | ⊢ rec ( ( 𝑓 ∈ V ↦ ( 𝑓 ∪ { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑢 ∈ 𝑓 ( ∃ 𝑣 ∈ 𝑓 ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( ( 2nd ‘ 𝑢 ) ∩ ( 2nd ‘ 𝑣 ) ) ) ) ∨ ∃ 𝑖 ∈ ω ( 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 ( { 〈 𝑖 , 𝑧 〉 } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑖 } ) ) ) ∈ ( 2nd ‘ 𝑢 ) } ) ) } ) ) , { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( 𝑥 = ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ) } ) Fn On | |
| 2 | 1 | a1i | ⊢ ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) → rec ( ( 𝑓 ∈ V ↦ ( 𝑓 ∪ { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑢 ∈ 𝑓 ( ∃ 𝑣 ∈ 𝑓 ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( ( 2nd ‘ 𝑢 ) ∩ ( 2nd ‘ 𝑣 ) ) ) ) ∨ ∃ 𝑖 ∈ ω ( 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 ( { 〈 𝑖 , 𝑧 〉 } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑖 } ) ) ) ∈ ( 2nd ‘ 𝑢 ) } ) ) } ) ) , { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( 𝑥 = ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ) } ) Fn On ) |
| 3 | ordom | ⊢ Ord ω | |
| 4 | ordsuc | ⊢ ( Ord ω ↔ Ord suc ω ) | |
| 5 | 3 4 | mpbi | ⊢ Ord suc ω |
| 6 | ordsson | ⊢ ( Ord suc ω → suc ω ⊆ On ) | |
| 7 | 5 6 | mp1i | ⊢ ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) → suc ω ⊆ On ) |
| 8 | 2 7 | fnssresd | ⊢ ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) → ( rec ( ( 𝑓 ∈ V ↦ ( 𝑓 ∪ { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑢 ∈ 𝑓 ( ∃ 𝑣 ∈ 𝑓 ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( ( 2nd ‘ 𝑢 ) ∩ ( 2nd ‘ 𝑣 ) ) ) ) ∨ ∃ 𝑖 ∈ ω ( 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 ( { 〈 𝑖 , 𝑧 〉 } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑖 } ) ) ) ∈ ( 2nd ‘ 𝑢 ) } ) ) } ) ) , { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( 𝑥 = ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ) } ) ↾ suc ω ) Fn suc ω ) |
| 9 | satf | ⊢ ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) → ( 𝑀 Sat 𝐸 ) = ( rec ( ( 𝑓 ∈ V ↦ ( 𝑓 ∪ { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑢 ∈ 𝑓 ( ∃ 𝑣 ∈ 𝑓 ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( ( 2nd ‘ 𝑢 ) ∩ ( 2nd ‘ 𝑣 ) ) ) ) ∨ ∃ 𝑖 ∈ ω ( 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 ( { 〈 𝑖 , 𝑧 〉 } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑖 } ) ) ) ∈ ( 2nd ‘ 𝑢 ) } ) ) } ) ) , { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( 𝑥 = ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ) } ) ↾ suc ω ) ) | |
| 10 | 9 | fneq1d | ⊢ ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) → ( ( 𝑀 Sat 𝐸 ) Fn suc ω ↔ ( rec ( ( 𝑓 ∈ V ↦ ( 𝑓 ∪ { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑢 ∈ 𝑓 ( ∃ 𝑣 ∈ 𝑓 ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( ( 2nd ‘ 𝑢 ) ∩ ( 2nd ‘ 𝑣 ) ) ) ) ∨ ∃ 𝑖 ∈ ω ( 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 ( { 〈 𝑖 , 𝑧 〉 } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑖 } ) ) ) ∈ ( 2nd ‘ 𝑢 ) } ) ) } ) ) , { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( 𝑥 = ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ) } ) ↾ suc ω ) Fn suc ω ) ) |
| 11 | 8 10 | mpbird | ⊢ ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) → ( 𝑀 Sat 𝐸 ) Fn suc ω ) |