This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A length 3 word is a function with a triple as domain. (Contributed by Alexander van der Vekens, 5-Dec-2017) (Revised by AV, 23-Jan-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | s3fn | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) → 〈“ 𝐴 𝐵 𝐶 ”〉 Fn { 0 , 1 , 2 } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | s3cl | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) → 〈“ 𝐴 𝐵 𝐶 ”〉 ∈ Word 𝑉 ) | |
| 2 | wrdfn | ⊢ ( 〈“ 𝐴 𝐵 𝐶 ”〉 ∈ Word 𝑉 → 〈“ 𝐴 𝐵 𝐶 ”〉 Fn ( 0 ..^ ( ♯ ‘ 〈“ 𝐴 𝐵 𝐶 ”〉 ) ) ) | |
| 3 | 1 2 | syl | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) → 〈“ 𝐴 𝐵 𝐶 ”〉 Fn ( 0 ..^ ( ♯ ‘ 〈“ 𝐴 𝐵 𝐶 ”〉 ) ) ) |
| 4 | s3len | ⊢ ( ♯ ‘ 〈“ 𝐴 𝐵 𝐶 ”〉 ) = 3 | |
| 5 | 4 | oveq2i | ⊢ ( 0 ..^ ( ♯ ‘ 〈“ 𝐴 𝐵 𝐶 ”〉 ) ) = ( 0 ..^ 3 ) |
| 6 | fzo0to3tp | ⊢ ( 0 ..^ 3 ) = { 0 , 1 , 2 } | |
| 7 | 5 6 | eqtr2i | ⊢ { 0 , 1 , 2 } = ( 0 ..^ ( ♯ ‘ 〈“ 𝐴 𝐵 𝐶 ”〉 ) ) |
| 8 | 7 | fneq2i | ⊢ ( 〈“ 𝐴 𝐵 𝐶 ”〉 Fn { 0 , 1 , 2 } ↔ 〈“ 𝐴 𝐵 𝐶 ”〉 Fn ( 0 ..^ ( ♯ ‘ 〈“ 𝐴 𝐵 𝐶 ”〉 ) ) ) |
| 9 | 3 8 | sylibr | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) → 〈“ 𝐴 𝐵 𝐶 ”〉 Fn { 0 , 1 , 2 } ) |