This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Obsolete version of ru as of 20-Jun-2025. (Contributed by NM, 7-Aug-1994) Remove use of ax-13 . (Revised by BJ, 12-Oct-2019) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ruOLD | ⊢ { 𝑥 ∣ 𝑥 ∉ 𝑥 } ∉ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm5.19 | ⊢ ¬ ( 𝑦 ∈ 𝑦 ↔ ¬ 𝑦 ∈ 𝑦 ) | |
| 2 | eleq1w | ⊢ ( 𝑥 = 𝑦 → ( 𝑥 ∈ 𝑦 ↔ 𝑦 ∈ 𝑦 ) ) | |
| 3 | df-nel | ⊢ ( 𝑥 ∉ 𝑥 ↔ ¬ 𝑥 ∈ 𝑥 ) | |
| 4 | id | ⊢ ( 𝑥 = 𝑦 → 𝑥 = 𝑦 ) | |
| 5 | 4 4 | eleq12d | ⊢ ( 𝑥 = 𝑦 → ( 𝑥 ∈ 𝑥 ↔ 𝑦 ∈ 𝑦 ) ) |
| 6 | 5 | notbid | ⊢ ( 𝑥 = 𝑦 → ( ¬ 𝑥 ∈ 𝑥 ↔ ¬ 𝑦 ∈ 𝑦 ) ) |
| 7 | 3 6 | bitrid | ⊢ ( 𝑥 = 𝑦 → ( 𝑥 ∉ 𝑥 ↔ ¬ 𝑦 ∈ 𝑦 ) ) |
| 8 | 2 7 | bibi12d | ⊢ ( 𝑥 = 𝑦 → ( ( 𝑥 ∈ 𝑦 ↔ 𝑥 ∉ 𝑥 ) ↔ ( 𝑦 ∈ 𝑦 ↔ ¬ 𝑦 ∈ 𝑦 ) ) ) |
| 9 | 8 | spvv | ⊢ ( ∀ 𝑥 ( 𝑥 ∈ 𝑦 ↔ 𝑥 ∉ 𝑥 ) → ( 𝑦 ∈ 𝑦 ↔ ¬ 𝑦 ∈ 𝑦 ) ) |
| 10 | 1 9 | mto | ⊢ ¬ ∀ 𝑥 ( 𝑥 ∈ 𝑦 ↔ 𝑥 ∉ 𝑥 ) |
| 11 | eqabb | ⊢ ( 𝑦 = { 𝑥 ∣ 𝑥 ∉ 𝑥 } ↔ ∀ 𝑥 ( 𝑥 ∈ 𝑦 ↔ 𝑥 ∉ 𝑥 ) ) | |
| 12 | 10 11 | mtbir | ⊢ ¬ 𝑦 = { 𝑥 ∣ 𝑥 ∉ 𝑥 } |
| 13 | 12 | nex | ⊢ ¬ ∃ 𝑦 𝑦 = { 𝑥 ∣ 𝑥 ∉ 𝑥 } |
| 14 | isset | ⊢ ( { 𝑥 ∣ 𝑥 ∉ 𝑥 } ∈ V ↔ ∃ 𝑦 𝑦 = { 𝑥 ∣ 𝑥 ∉ 𝑥 } ) | |
| 15 | 13 14 | mtbir | ⊢ ¬ { 𝑥 ∣ 𝑥 ∉ 𝑥 } ∈ V |
| 16 | 15 | nelir | ⊢ { 𝑥 ∣ 𝑥 ∉ 𝑥 } ∉ V |