This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Obsolete version of ru as of 20-Jun-2025. (Contributed by NM, 7-Aug-1994) Remove use of ax-13 . (Revised by BJ, 12-Oct-2019) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ruOLD | |- { x | x e/ x } e/ _V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm5.19 | |- -. ( y e. y <-> -. y e. y ) |
|
| 2 | eleq1w | |- ( x = y -> ( x e. y <-> y e. y ) ) |
|
| 3 | df-nel | |- ( x e/ x <-> -. x e. x ) |
|
| 4 | id | |- ( x = y -> x = y ) |
|
| 5 | 4 4 | eleq12d | |- ( x = y -> ( x e. x <-> y e. y ) ) |
| 6 | 5 | notbid | |- ( x = y -> ( -. x e. x <-> -. y e. y ) ) |
| 7 | 3 6 | bitrid | |- ( x = y -> ( x e/ x <-> -. y e. y ) ) |
| 8 | 2 7 | bibi12d | |- ( x = y -> ( ( x e. y <-> x e/ x ) <-> ( y e. y <-> -. y e. y ) ) ) |
| 9 | 8 | spvv | |- ( A. x ( x e. y <-> x e/ x ) -> ( y e. y <-> -. y e. y ) ) |
| 10 | 1 9 | mto | |- -. A. x ( x e. y <-> x e/ x ) |
| 11 | eqabb | |- ( y = { x | x e/ x } <-> A. x ( x e. y <-> x e/ x ) ) |
|
| 12 | 10 11 | mtbir | |- -. y = { x | x e/ x } |
| 13 | 12 | nex | |- -. E. y y = { x | x e/ x } |
| 14 | isset | |- ( { x | x e/ x } e. _V <-> E. y y = { x | x e/ x } ) |
|
| 15 | 13 14 | mtbir | |- -. { x | x e/ x } e. _V |
| 16 | 15 | nelir | |- { x | x e/ x } e/ _V |