This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Restricted quantifier version of Theorem 19.28 of Margaris p. 90. We don't need the nonempty class condition of r19.28zv when there is an outer quantifier. (Contributed by NM, 29-Oct-2012)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rr19.28v | ⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝜑 ∧ 𝜓 ) ↔ ∀ 𝑥 ∈ 𝐴 ( 𝜑 ∧ ∀ 𝑦 ∈ 𝐴 𝜓 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl | ⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝜑 ) | |
| 2 | 1 | ralimi | ⊢ ( ∀ 𝑦 ∈ 𝐴 ( 𝜑 ∧ 𝜓 ) → ∀ 𝑦 ∈ 𝐴 𝜑 ) |
| 3 | biidd | ⊢ ( 𝑦 = 𝑥 → ( 𝜑 ↔ 𝜑 ) ) | |
| 4 | 3 | rspcv | ⊢ ( 𝑥 ∈ 𝐴 → ( ∀ 𝑦 ∈ 𝐴 𝜑 → 𝜑 ) ) |
| 5 | 2 4 | syl5 | ⊢ ( 𝑥 ∈ 𝐴 → ( ∀ 𝑦 ∈ 𝐴 ( 𝜑 ∧ 𝜓 ) → 𝜑 ) ) |
| 6 | simpr | ⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝜓 ) | |
| 7 | 6 | ralimi | ⊢ ( ∀ 𝑦 ∈ 𝐴 ( 𝜑 ∧ 𝜓 ) → ∀ 𝑦 ∈ 𝐴 𝜓 ) |
| 8 | 5 7 | jca2 | ⊢ ( 𝑥 ∈ 𝐴 → ( ∀ 𝑦 ∈ 𝐴 ( 𝜑 ∧ 𝜓 ) → ( 𝜑 ∧ ∀ 𝑦 ∈ 𝐴 𝜓 ) ) ) |
| 9 | 8 | ralimia | ⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝜑 ∧ 𝜓 ) → ∀ 𝑥 ∈ 𝐴 ( 𝜑 ∧ ∀ 𝑦 ∈ 𝐴 𝜓 ) ) |
| 10 | r19.28v | ⊢ ( ( 𝜑 ∧ ∀ 𝑦 ∈ 𝐴 𝜓 ) → ∀ 𝑦 ∈ 𝐴 ( 𝜑 ∧ 𝜓 ) ) | |
| 11 | 10 | ralimi | ⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝜑 ∧ ∀ 𝑦 ∈ 𝐴 𝜓 ) → ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝜑 ∧ 𝜓 ) ) |
| 12 | 9 11 | impbii | ⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝜑 ∧ 𝜓 ) ↔ ∀ 𝑥 ∈ 𝐴 ( 𝜑 ∧ ∀ 𝑦 ∈ 𝐴 𝜓 ) ) |