This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The range of a restricted class of ordered pairs. (Contributed by Eric Schmidt, 16-Sep-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rnopab3 | ⊢ ( ∀ 𝑦 ∈ 𝐴 ∃ 𝑥 𝜑 ↔ ran { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑦 ∈ 𝐴 ∧ 𝜑 ) } = 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ral | ⊢ ( ∀ 𝑦 ∈ 𝐴 ∃ 𝑥 𝜑 ↔ ∀ 𝑦 ( 𝑦 ∈ 𝐴 → ∃ 𝑥 𝜑 ) ) | |
| 2 | pm4.71 | ⊢ ( ( 𝑦 ∈ 𝐴 → ∃ 𝑥 𝜑 ) ↔ ( 𝑦 ∈ 𝐴 ↔ ( 𝑦 ∈ 𝐴 ∧ ∃ 𝑥 𝜑 ) ) ) | |
| 3 | 2 | albii | ⊢ ( ∀ 𝑦 ( 𝑦 ∈ 𝐴 → ∃ 𝑥 𝜑 ) ↔ ∀ 𝑦 ( 𝑦 ∈ 𝐴 ↔ ( 𝑦 ∈ 𝐴 ∧ ∃ 𝑥 𝜑 ) ) ) |
| 4 | rnopab | ⊢ ran { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑦 ∈ 𝐴 ∧ 𝜑 ) } = { 𝑦 ∣ ∃ 𝑥 ( 𝑦 ∈ 𝐴 ∧ 𝜑 ) } | |
| 5 | 19.42v | ⊢ ( ∃ 𝑥 ( 𝑦 ∈ 𝐴 ∧ 𝜑 ) ↔ ( 𝑦 ∈ 𝐴 ∧ ∃ 𝑥 𝜑 ) ) | |
| 6 | 5 | abbii | ⊢ { 𝑦 ∣ ∃ 𝑥 ( 𝑦 ∈ 𝐴 ∧ 𝜑 ) } = { 𝑦 ∣ ( 𝑦 ∈ 𝐴 ∧ ∃ 𝑥 𝜑 ) } |
| 7 | 4 6 | eqtri | ⊢ ran { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑦 ∈ 𝐴 ∧ 𝜑 ) } = { 𝑦 ∣ ( 𝑦 ∈ 𝐴 ∧ ∃ 𝑥 𝜑 ) } |
| 8 | 7 | eqeq1i | ⊢ ( ran { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑦 ∈ 𝐴 ∧ 𝜑 ) } = 𝐴 ↔ { 𝑦 ∣ ( 𝑦 ∈ 𝐴 ∧ ∃ 𝑥 𝜑 ) } = 𝐴 ) |
| 9 | eqcom | ⊢ ( 𝐴 = { 𝑦 ∣ ( 𝑦 ∈ 𝐴 ∧ ∃ 𝑥 𝜑 ) } ↔ { 𝑦 ∣ ( 𝑦 ∈ 𝐴 ∧ ∃ 𝑥 𝜑 ) } = 𝐴 ) | |
| 10 | eqabb | ⊢ ( 𝐴 = { 𝑦 ∣ ( 𝑦 ∈ 𝐴 ∧ ∃ 𝑥 𝜑 ) } ↔ ∀ 𝑦 ( 𝑦 ∈ 𝐴 ↔ ( 𝑦 ∈ 𝐴 ∧ ∃ 𝑥 𝜑 ) ) ) | |
| 11 | 8 9 10 | 3bitr2ri | ⊢ ( ∀ 𝑦 ( 𝑦 ∈ 𝐴 ↔ ( 𝑦 ∈ 𝐴 ∧ ∃ 𝑥 𝜑 ) ) ↔ ran { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑦 ∈ 𝐴 ∧ 𝜑 ) } = 𝐴 ) |
| 12 | 1 3 11 | 3bitri | ⊢ ( ∀ 𝑦 ∈ 𝐴 ∃ 𝑥 𝜑 ↔ ran { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑦 ∈ 𝐴 ∧ 𝜑 ) } = 𝐴 ) |