This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.

Metamath Proof Explorer


Theorem rexv

Description: An existential quantifier restricted to the universe is unrestricted. (Contributed by NM, 26-Mar-2004)

Ref Expression
Assertion rexv x V φ x φ

Proof

Step Hyp Ref Expression
1 df-rex x V φ x x V φ
2 vex x V
3 2 biantrur φ x V φ
4 3 exbii x φ x x V φ
5 1 4 bitr4i x V φ x φ