This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Statement following from existence and generalization with equality. (Contributed by AV, 9-Feb-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rexraleqim.1 | |- ( x = z -> ( ps <-> ph ) ) |
|
| rexraleqim.2 | |- ( z = Y -> ( ph <-> th ) ) |
||
| Assertion | rexraleqim | |- ( ( E. z e. A ph /\ A. x e. A ( ps -> x = Y ) ) -> th ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rexraleqim.1 | |- ( x = z -> ( ps <-> ph ) ) |
|
| 2 | rexraleqim.2 | |- ( z = Y -> ( ph <-> th ) ) |
|
| 3 | eqeq1 | |- ( x = z -> ( x = Y <-> z = Y ) ) |
|
| 4 | 1 3 | imbi12d | |- ( x = z -> ( ( ps -> x = Y ) <-> ( ph -> z = Y ) ) ) |
| 5 | 4 | rspcva | |- ( ( z e. A /\ A. x e. A ( ps -> x = Y ) ) -> ( ph -> z = Y ) ) |
| 6 | 2 | biimpd | |- ( z = Y -> ( ph -> th ) ) |
| 7 | 5 6 | syli | |- ( ( z e. A /\ A. x e. A ( ps -> x = Y ) ) -> ( ph -> th ) ) |
| 8 | 7 | impancom | |- ( ( z e. A /\ ph ) -> ( A. x e. A ( ps -> x = Y ) -> th ) ) |
| 9 | 8 | rexlimiva | |- ( E. z e. A ph -> ( A. x e. A ( ps -> x = Y ) -> th ) ) |
| 10 | 9 | imp | |- ( ( E. z e. A ph /\ A. x e. A ( ps -> x = Y ) ) -> th ) |