This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Deduction quantifying both antecedent and consequent, based on Theorem 19.22 of Margaris p. 90. (Contributed by Thierry Arnoux, 27-Jan-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | reximd2a.1 | ⊢ Ⅎ 𝑥 𝜑 | |
| reximd2a.2 | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝜓 ) → 𝑥 ∈ 𝐵 ) | ||
| reximd2a.3 | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝜓 ) → 𝜒 ) | ||
| reximd2a.4 | ⊢ ( 𝜑 → ∃ 𝑥 ∈ 𝐴 𝜓 ) | ||
| Assertion | reximd2a | ⊢ ( 𝜑 → ∃ 𝑥 ∈ 𝐵 𝜒 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reximd2a.1 | ⊢ Ⅎ 𝑥 𝜑 | |
| 2 | reximd2a.2 | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝜓 ) → 𝑥 ∈ 𝐵 ) | |
| 3 | reximd2a.3 | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝜓 ) → 𝜒 ) | |
| 4 | reximd2a.4 | ⊢ ( 𝜑 → ∃ 𝑥 ∈ 𝐴 𝜓 ) | |
| 5 | 2 3 | jca | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝜓 ) → ( 𝑥 ∈ 𝐵 ∧ 𝜒 ) ) |
| 6 | 5 | expl | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ∧ 𝜓 ) → ( 𝑥 ∈ 𝐵 ∧ 𝜒 ) ) ) |
| 7 | 1 6 | eximd | ⊢ ( 𝜑 → ( ∃ 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜓 ) → ∃ 𝑥 ( 𝑥 ∈ 𝐵 ∧ 𝜒 ) ) ) |
| 8 | df-rex | ⊢ ( ∃ 𝑥 ∈ 𝐴 𝜓 ↔ ∃ 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜓 ) ) | |
| 9 | df-rex | ⊢ ( ∃ 𝑥 ∈ 𝐵 𝜒 ↔ ∃ 𝑥 ( 𝑥 ∈ 𝐵 ∧ 𝜒 ) ) | |
| 10 | 7 8 9 | 3imtr4g | ⊢ ( 𝜑 → ( ∃ 𝑥 ∈ 𝐴 𝜓 → ∃ 𝑥 ∈ 𝐵 𝜒 ) ) |
| 11 | 4 10 | mpd | ⊢ ( 𝜑 → ∃ 𝑥 ∈ 𝐵 𝜒 ) |