This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Deduction quantifying both antecedent and consequent, based on Theorem 19.22 of Margaris p. 90. (Contributed by Thierry Arnoux, 27-Jan-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | reximd2a.1 | |- F/ x ph |
|
| reximd2a.2 | |- ( ( ( ph /\ x e. A ) /\ ps ) -> x e. B ) |
||
| reximd2a.3 | |- ( ( ( ph /\ x e. A ) /\ ps ) -> ch ) |
||
| reximd2a.4 | |- ( ph -> E. x e. A ps ) |
||
| Assertion | reximd2a | |- ( ph -> E. x e. B ch ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reximd2a.1 | |- F/ x ph |
|
| 2 | reximd2a.2 | |- ( ( ( ph /\ x e. A ) /\ ps ) -> x e. B ) |
|
| 3 | reximd2a.3 | |- ( ( ( ph /\ x e. A ) /\ ps ) -> ch ) |
|
| 4 | reximd2a.4 | |- ( ph -> E. x e. A ps ) |
|
| 5 | 2 3 | jca | |- ( ( ( ph /\ x e. A ) /\ ps ) -> ( x e. B /\ ch ) ) |
| 6 | 5 | expl | |- ( ph -> ( ( x e. A /\ ps ) -> ( x e. B /\ ch ) ) ) |
| 7 | 1 6 | eximd | |- ( ph -> ( E. x ( x e. A /\ ps ) -> E. x ( x e. B /\ ch ) ) ) |
| 8 | df-rex | |- ( E. x e. A ps <-> E. x ( x e. A /\ ps ) ) |
|
| 9 | df-rex | |- ( E. x e. B ch <-> E. x ( x e. B /\ ch ) ) |
|
| 10 | 7 8 9 | 3imtr4g | |- ( ph -> ( E. x e. A ps -> E. x e. B ch ) ) |
| 11 | 4 10 | mpd | |- ( ph -> E. x e. B ch ) |