This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Restricted existential quantification over a difference. (Contributed by AV, 25-Oct-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rexdifi | ⊢ ( ( ∃ 𝑥 ∈ 𝐴 𝜑 ∧ ∀ 𝑥 ∈ 𝐵 ¬ 𝜑 ) → ∃ 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) 𝜑 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rex | ⊢ ( ∃ 𝑥 ∈ 𝐴 𝜑 ↔ ∃ 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ) | |
| 2 | df-ral | ⊢ ( ∀ 𝑥 ∈ 𝐵 ¬ 𝜑 ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐵 → ¬ 𝜑 ) ) | |
| 3 | nfa1 | ⊢ Ⅎ 𝑥 ∀ 𝑥 ( 𝑥 ∈ 𝐵 → ¬ 𝜑 ) | |
| 4 | simprl | ⊢ ( ( ∀ 𝑥 ( 𝑥 ∈ 𝐵 → ¬ 𝜑 ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ) → 𝑥 ∈ 𝐴 ) | |
| 5 | con2 | ⊢ ( ( 𝑥 ∈ 𝐵 → ¬ 𝜑 ) → ( 𝜑 → ¬ 𝑥 ∈ 𝐵 ) ) | |
| 6 | 5 | sps | ⊢ ( ∀ 𝑥 ( 𝑥 ∈ 𝐵 → ¬ 𝜑 ) → ( 𝜑 → ¬ 𝑥 ∈ 𝐵 ) ) |
| 7 | 6 | com12 | ⊢ ( 𝜑 → ( ∀ 𝑥 ( 𝑥 ∈ 𝐵 → ¬ 𝜑 ) → ¬ 𝑥 ∈ 𝐵 ) ) |
| 8 | 7 | adantl | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) → ( ∀ 𝑥 ( 𝑥 ∈ 𝐵 → ¬ 𝜑 ) → ¬ 𝑥 ∈ 𝐵 ) ) |
| 9 | 8 | impcom | ⊢ ( ( ∀ 𝑥 ( 𝑥 ∈ 𝐵 → ¬ 𝜑 ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ) → ¬ 𝑥 ∈ 𝐵 ) |
| 10 | 4 9 | eldifd | ⊢ ( ( ∀ 𝑥 ( 𝑥 ∈ 𝐵 → ¬ 𝜑 ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ) → 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) ) |
| 11 | simprr | ⊢ ( ( ∀ 𝑥 ( 𝑥 ∈ 𝐵 → ¬ 𝜑 ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ) → 𝜑 ) | |
| 12 | 10 11 | jca | ⊢ ( ( ∀ 𝑥 ( 𝑥 ∈ 𝐵 → ¬ 𝜑 ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ) → ( 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) ∧ 𝜑 ) ) |
| 13 | 12 | ex | ⊢ ( ∀ 𝑥 ( 𝑥 ∈ 𝐵 → ¬ 𝜑 ) → ( ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) → ( 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) ∧ 𝜑 ) ) ) |
| 14 | 3 13 | eximd | ⊢ ( ∀ 𝑥 ( 𝑥 ∈ 𝐵 → ¬ 𝜑 ) → ( ∃ 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) → ∃ 𝑥 ( 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) ∧ 𝜑 ) ) ) |
| 15 | 14 | impcom | ⊢ ( ( ∃ 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ∧ ∀ 𝑥 ( 𝑥 ∈ 𝐵 → ¬ 𝜑 ) ) → ∃ 𝑥 ( 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) ∧ 𝜑 ) ) |
| 16 | 1 2 15 | syl2anb | ⊢ ( ( ∃ 𝑥 ∈ 𝐴 𝜑 ∧ ∀ 𝑥 ∈ 𝐵 ¬ 𝜑 ) → ∃ 𝑥 ( 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) ∧ 𝜑 ) ) |
| 17 | df-rex | ⊢ ( ∃ 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) 𝜑 ↔ ∃ 𝑥 ( 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) ∧ 𝜑 ) ) | |
| 18 | 16 17 | sylibr | ⊢ ( ( ∃ 𝑥 ∈ 𝐴 𝜑 ∧ ∀ 𝑥 ∈ 𝐵 ¬ 𝜑 ) → ∃ 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) 𝜑 ) |