This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of structure restriction. (Contributed by Thierry Arnoux, 6-Sep-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | resvsca.r | ⊢ 𝑅 = ( 𝑊 ↾v 𝐴 ) | |
| resvsca.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | ||
| resvsca.b | ⊢ 𝐵 = ( Base ‘ 𝐹 ) | ||
| Assertion | resvval | ⊢ ( ( 𝑊 ∈ 𝑋 ∧ 𝐴 ∈ 𝑌 ) → 𝑅 = if ( 𝐵 ⊆ 𝐴 , 𝑊 , ( 𝑊 sSet 〈 ( Scalar ‘ ndx ) , ( 𝐹 ↾s 𝐴 ) 〉 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resvsca.r | ⊢ 𝑅 = ( 𝑊 ↾v 𝐴 ) | |
| 2 | resvsca.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | |
| 3 | resvsca.b | ⊢ 𝐵 = ( Base ‘ 𝐹 ) | |
| 4 | elex | ⊢ ( 𝑊 ∈ 𝑋 → 𝑊 ∈ V ) | |
| 5 | elex | ⊢ ( 𝐴 ∈ 𝑌 → 𝐴 ∈ V ) | |
| 6 | ovex | ⊢ ( 𝑊 sSet 〈 ( Scalar ‘ ndx ) , ( 𝐹 ↾s 𝐴 ) 〉 ) ∈ V | |
| 7 | ifcl | ⊢ ( ( 𝑊 ∈ V ∧ ( 𝑊 sSet 〈 ( Scalar ‘ ndx ) , ( 𝐹 ↾s 𝐴 ) 〉 ) ∈ V ) → if ( 𝐵 ⊆ 𝐴 , 𝑊 , ( 𝑊 sSet 〈 ( Scalar ‘ ndx ) , ( 𝐹 ↾s 𝐴 ) 〉 ) ) ∈ V ) | |
| 8 | 6 7 | mpan2 | ⊢ ( 𝑊 ∈ V → if ( 𝐵 ⊆ 𝐴 , 𝑊 , ( 𝑊 sSet 〈 ( Scalar ‘ ndx ) , ( 𝐹 ↾s 𝐴 ) 〉 ) ) ∈ V ) |
| 9 | 8 | adantr | ⊢ ( ( 𝑊 ∈ V ∧ 𝐴 ∈ V ) → if ( 𝐵 ⊆ 𝐴 , 𝑊 , ( 𝑊 sSet 〈 ( Scalar ‘ ndx ) , ( 𝐹 ↾s 𝐴 ) 〉 ) ) ∈ V ) |
| 10 | simpl | ⊢ ( ( 𝑤 = 𝑊 ∧ 𝑥 = 𝐴 ) → 𝑤 = 𝑊 ) | |
| 11 | 10 | fveq2d | ⊢ ( ( 𝑤 = 𝑊 ∧ 𝑥 = 𝐴 ) → ( Scalar ‘ 𝑤 ) = ( Scalar ‘ 𝑊 ) ) |
| 12 | 11 2 | eqtr4di | ⊢ ( ( 𝑤 = 𝑊 ∧ 𝑥 = 𝐴 ) → ( Scalar ‘ 𝑤 ) = 𝐹 ) |
| 13 | 12 | fveq2d | ⊢ ( ( 𝑤 = 𝑊 ∧ 𝑥 = 𝐴 ) → ( Base ‘ ( Scalar ‘ 𝑤 ) ) = ( Base ‘ 𝐹 ) ) |
| 14 | 13 3 | eqtr4di | ⊢ ( ( 𝑤 = 𝑊 ∧ 𝑥 = 𝐴 ) → ( Base ‘ ( Scalar ‘ 𝑤 ) ) = 𝐵 ) |
| 15 | simpr | ⊢ ( ( 𝑤 = 𝑊 ∧ 𝑥 = 𝐴 ) → 𝑥 = 𝐴 ) | |
| 16 | 14 15 | sseq12d | ⊢ ( ( 𝑤 = 𝑊 ∧ 𝑥 = 𝐴 ) → ( ( Base ‘ ( Scalar ‘ 𝑤 ) ) ⊆ 𝑥 ↔ 𝐵 ⊆ 𝐴 ) ) |
| 17 | 12 15 | oveq12d | ⊢ ( ( 𝑤 = 𝑊 ∧ 𝑥 = 𝐴 ) → ( ( Scalar ‘ 𝑤 ) ↾s 𝑥 ) = ( 𝐹 ↾s 𝐴 ) ) |
| 18 | 17 | opeq2d | ⊢ ( ( 𝑤 = 𝑊 ∧ 𝑥 = 𝐴 ) → 〈 ( Scalar ‘ ndx ) , ( ( Scalar ‘ 𝑤 ) ↾s 𝑥 ) 〉 = 〈 ( Scalar ‘ ndx ) , ( 𝐹 ↾s 𝐴 ) 〉 ) |
| 19 | 10 18 | oveq12d | ⊢ ( ( 𝑤 = 𝑊 ∧ 𝑥 = 𝐴 ) → ( 𝑤 sSet 〈 ( Scalar ‘ ndx ) , ( ( Scalar ‘ 𝑤 ) ↾s 𝑥 ) 〉 ) = ( 𝑊 sSet 〈 ( Scalar ‘ ndx ) , ( 𝐹 ↾s 𝐴 ) 〉 ) ) |
| 20 | 16 10 19 | ifbieq12d | ⊢ ( ( 𝑤 = 𝑊 ∧ 𝑥 = 𝐴 ) → if ( ( Base ‘ ( Scalar ‘ 𝑤 ) ) ⊆ 𝑥 , 𝑤 , ( 𝑤 sSet 〈 ( Scalar ‘ ndx ) , ( ( Scalar ‘ 𝑤 ) ↾s 𝑥 ) 〉 ) ) = if ( 𝐵 ⊆ 𝐴 , 𝑊 , ( 𝑊 sSet 〈 ( Scalar ‘ ndx ) , ( 𝐹 ↾s 𝐴 ) 〉 ) ) ) |
| 21 | df-resv | ⊢ ↾v = ( 𝑤 ∈ V , 𝑥 ∈ V ↦ if ( ( Base ‘ ( Scalar ‘ 𝑤 ) ) ⊆ 𝑥 , 𝑤 , ( 𝑤 sSet 〈 ( Scalar ‘ ndx ) , ( ( Scalar ‘ 𝑤 ) ↾s 𝑥 ) 〉 ) ) ) | |
| 22 | 20 21 | ovmpoga | ⊢ ( ( 𝑊 ∈ V ∧ 𝐴 ∈ V ∧ if ( 𝐵 ⊆ 𝐴 , 𝑊 , ( 𝑊 sSet 〈 ( Scalar ‘ ndx ) , ( 𝐹 ↾s 𝐴 ) 〉 ) ) ∈ V ) → ( 𝑊 ↾v 𝐴 ) = if ( 𝐵 ⊆ 𝐴 , 𝑊 , ( 𝑊 sSet 〈 ( Scalar ‘ ndx ) , ( 𝐹 ↾s 𝐴 ) 〉 ) ) ) |
| 23 | 9 22 | mpd3an3 | ⊢ ( ( 𝑊 ∈ V ∧ 𝐴 ∈ V ) → ( 𝑊 ↾v 𝐴 ) = if ( 𝐵 ⊆ 𝐴 , 𝑊 , ( 𝑊 sSet 〈 ( Scalar ‘ ndx ) , ( 𝐹 ↾s 𝐴 ) 〉 ) ) ) |
| 24 | 4 5 23 | syl2an | ⊢ ( ( 𝑊 ∈ 𝑋 ∧ 𝐴 ∈ 𝑌 ) → ( 𝑊 ↾v 𝐴 ) = if ( 𝐵 ⊆ 𝐴 , 𝑊 , ( 𝑊 sSet 〈 ( Scalar ‘ ndx ) , ( 𝐹 ↾s 𝐴 ) 〉 ) ) ) |
| 25 | 1 24 | eqtrid | ⊢ ( ( 𝑊 ∈ 𝑋 ∧ 𝐴 ∈ 𝑌 ) → 𝑅 = if ( 𝐵 ⊆ 𝐴 , 𝑊 , ( 𝑊 sSet 〈 ( Scalar ‘ ndx ) , ( 𝐹 ↾s 𝐴 ) 〉 ) ) ) |