This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define an operator to restrict the scalar field component of an extended structure. (Contributed by Thierry Arnoux, 5-Sep-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-resv | ⊢ ↾v = ( 𝑤 ∈ V , 𝑥 ∈ V ↦ if ( ( Base ‘ ( Scalar ‘ 𝑤 ) ) ⊆ 𝑥 , 𝑤 , ( 𝑤 sSet 〈 ( Scalar ‘ ndx ) , ( ( Scalar ‘ 𝑤 ) ↾s 𝑥 ) 〉 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cresv | ⊢ ↾v | |
| 1 | vw | ⊢ 𝑤 | |
| 2 | cvv | ⊢ V | |
| 3 | vx | ⊢ 𝑥 | |
| 4 | cbs | ⊢ Base | |
| 5 | csca | ⊢ Scalar | |
| 6 | 1 | cv | ⊢ 𝑤 |
| 7 | 6 5 | cfv | ⊢ ( Scalar ‘ 𝑤 ) |
| 8 | 7 4 | cfv | ⊢ ( Base ‘ ( Scalar ‘ 𝑤 ) ) |
| 9 | 3 | cv | ⊢ 𝑥 |
| 10 | 8 9 | wss | ⊢ ( Base ‘ ( Scalar ‘ 𝑤 ) ) ⊆ 𝑥 |
| 11 | csts | ⊢ sSet | |
| 12 | cnx | ⊢ ndx | |
| 13 | 12 5 | cfv | ⊢ ( Scalar ‘ ndx ) |
| 14 | cress | ⊢ ↾s | |
| 15 | 7 9 14 | co | ⊢ ( ( Scalar ‘ 𝑤 ) ↾s 𝑥 ) |
| 16 | 13 15 | cop | ⊢ 〈 ( Scalar ‘ ndx ) , ( ( Scalar ‘ 𝑤 ) ↾s 𝑥 ) 〉 |
| 17 | 6 16 11 | co | ⊢ ( 𝑤 sSet 〈 ( Scalar ‘ ndx ) , ( ( Scalar ‘ 𝑤 ) ↾s 𝑥 ) 〉 ) |
| 18 | 10 6 17 | cif | ⊢ if ( ( Base ‘ ( Scalar ‘ 𝑤 ) ) ⊆ 𝑥 , 𝑤 , ( 𝑤 sSet 〈 ( Scalar ‘ ndx ) , ( ( Scalar ‘ 𝑤 ) ↾s 𝑥 ) 〉 ) ) |
| 19 | 1 3 2 2 18 | cmpo | ⊢ ( 𝑤 ∈ V , 𝑥 ∈ V ↦ if ( ( Base ‘ ( Scalar ‘ 𝑤 ) ) ⊆ 𝑥 , 𝑤 , ( 𝑤 sSet 〈 ( Scalar ‘ ndx ) , ( ( Scalar ‘ 𝑤 ) ↾s 𝑥 ) 〉 ) ) ) |
| 20 | 0 19 | wceq | ⊢ ↾v = ( 𝑤 ∈ V , 𝑥 ∈ V ↦ if ( ( Base ‘ ( Scalar ‘ 𝑤 ) ) ⊆ 𝑥 , 𝑤 , ( 𝑤 sSet 〈 ( Scalar ‘ ndx ) , ( ( Scalar ‘ 𝑤 ) ↾s 𝑥 ) 〉 ) ) ) |