This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The "repeated symbol word" of length 1. (Contributed by AV, 4-Nov-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | repsw1 | |- ( S e. V -> ( S repeatS 1 ) = <" S "> ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1nn0 | |- 1 e. NN0 |
|
| 2 | repsconst | |- ( ( S e. V /\ 1 e. NN0 ) -> ( S repeatS 1 ) = ( ( 0 ..^ 1 ) X. { S } ) ) |
|
| 3 | 1 2 | mpan2 | |- ( S e. V -> ( S repeatS 1 ) = ( ( 0 ..^ 1 ) X. { S } ) ) |
| 4 | fzo01 | |- ( 0 ..^ 1 ) = { 0 } |
|
| 5 | 4 | a1i | |- ( S e. V -> ( 0 ..^ 1 ) = { 0 } ) |
| 6 | 5 | xpeq1d | |- ( S e. V -> ( ( 0 ..^ 1 ) X. { S } ) = ( { 0 } X. { S } ) ) |
| 7 | c0ex | |- 0 e. _V |
|
| 8 | xpsng | |- ( ( 0 e. _V /\ S e. V ) -> ( { 0 } X. { S } ) = { <. 0 , S >. } ) |
|
| 9 | 7 8 | mpan | |- ( S e. V -> ( { 0 } X. { S } ) = { <. 0 , S >. } ) |
| 10 | 3 6 9 | 3eqtrd | |- ( S e. V -> ( S repeatS 1 ) = { <. 0 , S >. } ) |
| 11 | s1val | |- ( S e. V -> <" S "> = { <. 0 , S >. } ) |
|
| 12 | 10 11 | eqtr4d | |- ( S e. V -> ( S repeatS 1 ) = <" S "> ) |