This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The class of cosets by R is reflexive, see dfrefrel3 . (Contributed by Peter Mazsa, 30-Jul-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | refrelcoss3 | ⊢ ( ∀ 𝑥 ∈ dom ≀ 𝑅 ∀ 𝑦 ∈ ran ≀ 𝑅 ( 𝑥 = 𝑦 → 𝑥 ≀ 𝑅 𝑦 ) ∧ Rel ≀ 𝑅 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | refrelcosslem | ⊢ ∀ 𝑥 ∈ dom ≀ 𝑅 𝑥 ≀ 𝑅 𝑥 | |
| 2 | idinxpssinxp4 | ⊢ ( ∀ 𝑥 ∈ dom ≀ 𝑅 ∀ 𝑦 ∈ dom ≀ 𝑅 ( 𝑥 = 𝑦 → 𝑥 ≀ 𝑅 𝑦 ) ↔ ∀ 𝑥 ∈ dom ≀ 𝑅 𝑥 ≀ 𝑅 𝑥 ) | |
| 3 | 1 2 | mpbir | ⊢ ∀ 𝑥 ∈ dom ≀ 𝑅 ∀ 𝑦 ∈ dom ≀ 𝑅 ( 𝑥 = 𝑦 → 𝑥 ≀ 𝑅 𝑦 ) |
| 4 | rncossdmcoss | ⊢ ran ≀ 𝑅 = dom ≀ 𝑅 | |
| 5 | 4 | raleqi | ⊢ ( ∀ 𝑦 ∈ ran ≀ 𝑅 ( 𝑥 = 𝑦 → 𝑥 ≀ 𝑅 𝑦 ) ↔ ∀ 𝑦 ∈ dom ≀ 𝑅 ( 𝑥 = 𝑦 → 𝑥 ≀ 𝑅 𝑦 ) ) |
| 6 | 5 | ralbii | ⊢ ( ∀ 𝑥 ∈ dom ≀ 𝑅 ∀ 𝑦 ∈ ran ≀ 𝑅 ( 𝑥 = 𝑦 → 𝑥 ≀ 𝑅 𝑦 ) ↔ ∀ 𝑥 ∈ dom ≀ 𝑅 ∀ 𝑦 ∈ dom ≀ 𝑅 ( 𝑥 = 𝑦 → 𝑥 ≀ 𝑅 𝑦 ) ) |
| 7 | 3 6 | mpbir | ⊢ ∀ 𝑥 ∈ dom ≀ 𝑅 ∀ 𝑦 ∈ ran ≀ 𝑅 ( 𝑥 = 𝑦 → 𝑥 ≀ 𝑅 𝑦 ) |
| 8 | relcoss | ⊢ Rel ≀ 𝑅 | |
| 9 | 7 8 | pm3.2i | ⊢ ( ∀ 𝑥 ∈ dom ≀ 𝑅 ∀ 𝑦 ∈ ran ≀ 𝑅 ( 𝑥 = 𝑦 → 𝑥 ≀ 𝑅 𝑦 ) ∧ Rel ≀ 𝑅 ) |