This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The class of cosets by R is reflexive, see dfrefrel3 . (Contributed by Peter Mazsa, 30-Jul-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | refrelcoss3 | |- ( A. x e. dom ,~ R A. y e. ran ,~ R ( x = y -> x ,~ R y ) /\ Rel ,~ R ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | refrelcosslem | |- A. x e. dom ,~ R x ,~ R x |
|
| 2 | idinxpssinxp4 | |- ( A. x e. dom ,~ R A. y e. dom ,~ R ( x = y -> x ,~ R y ) <-> A. x e. dom ,~ R x ,~ R x ) |
|
| 3 | 1 2 | mpbir | |- A. x e. dom ,~ R A. y e. dom ,~ R ( x = y -> x ,~ R y ) |
| 4 | rncossdmcoss | |- ran ,~ R = dom ,~ R |
|
| 5 | 4 | raleqi | |- ( A. y e. ran ,~ R ( x = y -> x ,~ R y ) <-> A. y e. dom ,~ R ( x = y -> x ,~ R y ) ) |
| 6 | 5 | ralbii | |- ( A. x e. dom ,~ R A. y e. ran ,~ R ( x = y -> x ,~ R y ) <-> A. x e. dom ,~ R A. y e. dom ,~ R ( x = y -> x ,~ R y ) ) |
| 7 | 3 6 | mpbir | |- A. x e. dom ,~ R A. y e. ran ,~ R ( x = y -> x ,~ R y ) |
| 8 | relcoss | |- Rel ,~ R |
|
| 9 | 7 8 | pm3.2i | |- ( A. x e. dom ,~ R A. y e. ran ,~ R ( x = y -> x ,~ R y ) /\ Rel ,~ R ) |