This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A number is equal to the reciprocal of its reciprocal. Theorem I.10 of Apostol p. 18. (Contributed by NM, 9-Feb-1995)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | divclz.1 | ⊢ 𝐴 ∈ ℂ | |
| reccl.2 | ⊢ 𝐴 ≠ 0 | ||
| Assertion | recreci | ⊢ ( 1 / ( 1 / 𝐴 ) ) = 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | divclz.1 | ⊢ 𝐴 ∈ ℂ | |
| 2 | reccl.2 | ⊢ 𝐴 ≠ 0 | |
| 3 | recrec | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( 1 / ( 1 / 𝐴 ) ) = 𝐴 ) | |
| 4 | 1 2 3 | mp2an | ⊢ ( 1 / ( 1 / 𝐴 ) ) = 𝐴 |