This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.

Metamath Proof Explorer


Theorem ralimiaa

Description: Inference quantifying both antecedent and consequent. (Contributed by NM, 4-Aug-2007)

Ref Expression
Hypothesis ralimiaa.1 x A φ ψ
Assertion ralimiaa x A φ x A ψ

Proof

Step Hyp Ref Expression
1 ralimiaa.1 x A φ ψ
2 1 ex x A φ ψ
3 2 ralimia x A φ x A ψ