This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equality deduction for restricted existential quantifier, changing both formula and quantifier domain. Inference form. (Contributed by David Moews, 1-May-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rexeqbii.1 | ⊢ 𝐴 = 𝐵 | |
| rexeqbii.2 | ⊢ ( 𝜓 ↔ 𝜒 ) | ||
| Assertion | rexeqbii | ⊢ ( ∃ 𝑥 ∈ 𝐴 𝜓 ↔ ∃ 𝑥 ∈ 𝐵 𝜒 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rexeqbii.1 | ⊢ 𝐴 = 𝐵 | |
| 2 | rexeqbii.2 | ⊢ ( 𝜓 ↔ 𝜒 ) | |
| 3 | 1 | eleq2i | ⊢ ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) |
| 4 | 3 2 | anbi12i | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝜓 ) ↔ ( 𝑥 ∈ 𝐵 ∧ 𝜒 ) ) |
| 5 | 4 | rexbii2 | ⊢ ( ∃ 𝑥 ∈ 𝐴 𝜓 ↔ ∃ 𝑥 ∈ 𝐵 𝜒 ) |