This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: All elements of a class are elements of a class equal to this class. (Contributed by AV, 30-Oct-2020) (Proof shortened by Wolf Lammen, 18-Jul-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | raleleq | ⊢ ( 𝐴 = 𝐵 → ∀ 𝑥 ∈ 𝐴 𝑥 ∈ 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralel | ⊢ ∀ 𝑥 ∈ 𝐵 𝑥 ∈ 𝐵 | |
| 2 | raleq | ⊢ ( 𝐴 = 𝐵 → ( ∀ 𝑥 ∈ 𝐴 𝑥 ∈ 𝐵 ↔ ∀ 𝑥 ∈ 𝐵 𝑥 ∈ 𝐵 ) ) | |
| 3 | 1 2 | mpbiri | ⊢ ( 𝐴 = 𝐵 → ∀ 𝑥 ∈ 𝐴 𝑥 ∈ 𝐵 ) |