This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Subclass law for restricted abstraction. (Contributed by Thierry Arnoux, 25-Sep-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | rabss3d.1 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝜓 ) ) → 𝑥 ∈ 𝐵 ) | |
| Assertion | rabss3d | ⊢ ( 𝜑 → { 𝑥 ∈ 𝐴 ∣ 𝜓 } ⊆ { 𝑥 ∈ 𝐵 ∣ 𝜓 } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rabss3d.1 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝜓 ) ) → 𝑥 ∈ 𝐵 ) | |
| 2 | nfv | ⊢ Ⅎ 𝑥 𝜑 | |
| 3 | nfrab1 | ⊢ Ⅎ 𝑥 { 𝑥 ∈ 𝐴 ∣ 𝜓 } | |
| 4 | nfrab1 | ⊢ Ⅎ 𝑥 { 𝑥 ∈ 𝐵 ∣ 𝜓 } | |
| 5 | simprr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝜓 ) ) → 𝜓 ) | |
| 6 | 1 5 | jca | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝜓 ) ) → ( 𝑥 ∈ 𝐵 ∧ 𝜓 ) ) |
| 7 | 6 | ex | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ∧ 𝜓 ) → ( 𝑥 ∈ 𝐵 ∧ 𝜓 ) ) ) |
| 8 | rabid | ⊢ ( 𝑥 ∈ { 𝑥 ∈ 𝐴 ∣ 𝜓 } ↔ ( 𝑥 ∈ 𝐴 ∧ 𝜓 ) ) | |
| 9 | rabid | ⊢ ( 𝑥 ∈ { 𝑥 ∈ 𝐵 ∣ 𝜓 } ↔ ( 𝑥 ∈ 𝐵 ∧ 𝜓 ) ) | |
| 10 | 7 8 9 | 3imtr4g | ⊢ ( 𝜑 → ( 𝑥 ∈ { 𝑥 ∈ 𝐴 ∣ 𝜓 } → 𝑥 ∈ { 𝑥 ∈ 𝐵 ∣ 𝜓 } ) ) |
| 11 | 2 3 4 10 | ssrd | ⊢ ( 𝜑 → { 𝑥 ∈ 𝐴 ∣ 𝜓 } ⊆ { 𝑥 ∈ 𝐵 ∣ 𝜓 } ) |