This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Subclass law for restricted abstraction. (Contributed by Thierry Arnoux, 25-Sep-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | rabss3d.1 | |- ( ( ph /\ ( x e. A /\ ps ) ) -> x e. B ) |
|
| Assertion | rabss3d | |- ( ph -> { x e. A | ps } C_ { x e. B | ps } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rabss3d.1 | |- ( ( ph /\ ( x e. A /\ ps ) ) -> x e. B ) |
|
| 2 | nfv | |- F/ x ph |
|
| 3 | nfrab1 | |- F/_ x { x e. A | ps } |
|
| 4 | nfrab1 | |- F/_ x { x e. B | ps } |
|
| 5 | simprr | |- ( ( ph /\ ( x e. A /\ ps ) ) -> ps ) |
|
| 6 | 1 5 | jca | |- ( ( ph /\ ( x e. A /\ ps ) ) -> ( x e. B /\ ps ) ) |
| 7 | 6 | ex | |- ( ph -> ( ( x e. A /\ ps ) -> ( x e. B /\ ps ) ) ) |
| 8 | rabid | |- ( x e. { x e. A | ps } <-> ( x e. A /\ ps ) ) |
|
| 9 | rabid | |- ( x e. { x e. B | ps } <-> ( x e. B /\ ps ) ) |
|
| 10 | 7 8 9 | 3imtr4g | |- ( ph -> ( x e. { x e. A | ps } -> x e. { x e. B | ps } ) ) |
| 11 | 2 3 4 10 | ssrd | |- ( ph -> { x e. A | ps } C_ { x e. B | ps } ) |