This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Obsolete version of rabss2 as of 1-Feb-2026. (Contributed by NM, 30-May-2006) (Proof shortened by Andrew Salmon, 26-Jun-2011) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rabss2OLD | ⊢ ( 𝐴 ⊆ 𝐵 → { 𝑥 ∈ 𝐴 ∣ 𝜑 } ⊆ { 𝑥 ∈ 𝐵 ∣ 𝜑 } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm3.45 | ⊢ ( ( 𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵 ) → ( ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) → ( 𝑥 ∈ 𝐵 ∧ 𝜑 ) ) ) | |
| 2 | 1 | alimi | ⊢ ( ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵 ) → ∀ 𝑥 ( ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) → ( 𝑥 ∈ 𝐵 ∧ 𝜑 ) ) ) |
| 3 | df-ss | ⊢ ( 𝐴 ⊆ 𝐵 ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵 ) ) | |
| 4 | ss2ab | ⊢ ( { 𝑥 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) } ⊆ { 𝑥 ∣ ( 𝑥 ∈ 𝐵 ∧ 𝜑 ) } ↔ ∀ 𝑥 ( ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) → ( 𝑥 ∈ 𝐵 ∧ 𝜑 ) ) ) | |
| 5 | 2 3 4 | 3imtr4i | ⊢ ( 𝐴 ⊆ 𝐵 → { 𝑥 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) } ⊆ { 𝑥 ∣ ( 𝑥 ∈ 𝐵 ∧ 𝜑 ) } ) |
| 6 | df-rab | ⊢ { 𝑥 ∈ 𝐴 ∣ 𝜑 } = { 𝑥 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) } | |
| 7 | df-rab | ⊢ { 𝑥 ∈ 𝐵 ∣ 𝜑 } = { 𝑥 ∣ ( 𝑥 ∈ 𝐵 ∧ 𝜑 ) } | |
| 8 | 5 6 7 | 3sstr4g | ⊢ ( 𝐴 ⊆ 𝐵 → { 𝑥 ∈ 𝐴 ∣ 𝜑 } ⊆ { 𝑥 ∈ 𝐵 ∣ 𝜑 } ) |