This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Obsolete version of rabss2 as of 1-Feb-2026. (Contributed by NM, 30-May-2006) (Proof shortened by Andrew Salmon, 26-Jun-2011) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rabss2OLD | |- ( A C_ B -> { x e. A | ph } C_ { x e. B | ph } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm3.45 | |- ( ( x e. A -> x e. B ) -> ( ( x e. A /\ ph ) -> ( x e. B /\ ph ) ) ) |
|
| 2 | 1 | alimi | |- ( A. x ( x e. A -> x e. B ) -> A. x ( ( x e. A /\ ph ) -> ( x e. B /\ ph ) ) ) |
| 3 | df-ss | |- ( A C_ B <-> A. x ( x e. A -> x e. B ) ) |
|
| 4 | ss2ab | |- ( { x | ( x e. A /\ ph ) } C_ { x | ( x e. B /\ ph ) } <-> A. x ( ( x e. A /\ ph ) -> ( x e. B /\ ph ) ) ) |
|
| 5 | 2 3 4 | 3imtr4i | |- ( A C_ B -> { x | ( x e. A /\ ph ) } C_ { x | ( x e. B /\ ph ) } ) |
| 6 | df-rab | |- { x e. A | ph } = { x | ( x e. A /\ ph ) } |
|
| 7 | df-rab | |- { x e. B | ph } = { x | ( x e. B /\ ph ) } |
|
| 8 | 5 6 7 | 3sstr4g | |- ( A C_ B -> { x e. A | ph } C_ { x e. B | ph } ) |