This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: One direction of a restricted quantifier version of 19.44 . The other direction holds when A is nonempty, see r19.44zv . (Contributed by NM, 2-Apr-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | r19.44v | ⊢ ( ∃ 𝑥 ∈ 𝐴 ( 𝜑 ∨ 𝜓 ) → ( ∃ 𝑥 ∈ 𝐴 𝜑 ∨ 𝜓 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | r19.43 | ⊢ ( ∃ 𝑥 ∈ 𝐴 ( 𝜑 ∨ 𝜓 ) ↔ ( ∃ 𝑥 ∈ 𝐴 𝜑 ∨ ∃ 𝑥 ∈ 𝐴 𝜓 ) ) | |
| 2 | id | ⊢ ( 𝜓 → 𝜓 ) | |
| 3 | 2 | rexlimivw | ⊢ ( ∃ 𝑥 ∈ 𝐴 𝜓 → 𝜓 ) |
| 4 | 3 | orim2i | ⊢ ( ( ∃ 𝑥 ∈ 𝐴 𝜑 ∨ ∃ 𝑥 ∈ 𝐴 𝜓 ) → ( ∃ 𝑥 ∈ 𝐴 𝜑 ∨ 𝜓 ) ) |
| 5 | 1 4 | sylbi | ⊢ ( ∃ 𝑥 ∈ 𝐴 ( 𝜑 ∨ 𝜓 ) → ( ∃ 𝑥 ∈ 𝐴 𝜑 ∨ 𝜓 ) ) |