This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equality theorem for quotient set, deduction form. (Contributed by Steven Nguyen, 30-Apr-2023)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | qseq12d.1 | ⊢ ( 𝜑 → 𝐴 = 𝐵 ) | |
| qseq12d.2 | ⊢ ( 𝜑 → 𝐶 = 𝐷 ) | ||
| Assertion | qseq12d | ⊢ ( 𝜑 → ( 𝐴 / 𝐶 ) = ( 𝐵 / 𝐷 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | qseq12d.1 | ⊢ ( 𝜑 → 𝐴 = 𝐵 ) | |
| 2 | qseq12d.2 | ⊢ ( 𝜑 → 𝐶 = 𝐷 ) | |
| 3 | qseq12 | ⊢ ( ( 𝐴 = 𝐵 ∧ 𝐶 = 𝐷 ) → ( 𝐴 / 𝐶 ) = ( 𝐵 / 𝐷 ) ) | |
| 4 | 1 2 3 | syl2anc | ⊢ ( 𝜑 → ( 𝐴 / 𝐶 ) = ( 𝐵 / 𝐷 ) ) |