This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A specialized lemma for set theory (ordered pair theorem). (Contributed by NM, 18-Oct-1995) (Proof shortened by Wolf Lammen, 8-Dec-2012)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | oplem1.1 | ⊢ ( 𝜑 → ( 𝜓 ∨ 𝜒 ) ) | |
| oplem1.2 | ⊢ ( 𝜑 → ( 𝜃 ∨ 𝜏 ) ) | ||
| oplem1.3 | ⊢ ( 𝜓 ↔ 𝜃 ) | ||
| oplem1.4 | ⊢ ( 𝜒 → ( 𝜃 ↔ 𝜏 ) ) | ||
| Assertion | oplem1 | ⊢ ( 𝜑 → 𝜓 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oplem1.1 | ⊢ ( 𝜑 → ( 𝜓 ∨ 𝜒 ) ) | |
| 2 | oplem1.2 | ⊢ ( 𝜑 → ( 𝜃 ∨ 𝜏 ) ) | |
| 3 | oplem1.3 | ⊢ ( 𝜓 ↔ 𝜃 ) | |
| 4 | oplem1.4 | ⊢ ( 𝜒 → ( 𝜃 ↔ 𝜏 ) ) | |
| 5 | 3 | notbii | ⊢ ( ¬ 𝜓 ↔ ¬ 𝜃 ) |
| 6 | 1 | ord | ⊢ ( 𝜑 → ( ¬ 𝜓 → 𝜒 ) ) |
| 7 | 5 6 | biimtrrid | ⊢ ( 𝜑 → ( ¬ 𝜃 → 𝜒 ) ) |
| 8 | 2 | ord | ⊢ ( 𝜑 → ( ¬ 𝜃 → 𝜏 ) ) |
| 9 | 7 8 | jcad | ⊢ ( 𝜑 → ( ¬ 𝜃 → ( 𝜒 ∧ 𝜏 ) ) ) |
| 10 | 4 | biimpar | ⊢ ( ( 𝜒 ∧ 𝜏 ) → 𝜃 ) |
| 11 | 9 10 | syl6 | ⊢ ( 𝜑 → ( ¬ 𝜃 → 𝜃 ) ) |
| 12 | 11 | pm2.18d | ⊢ ( 𝜑 → 𝜃 ) |
| 13 | 12 3 | sylibr | ⊢ ( 𝜑 → 𝜓 ) |