This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Closure of the order relation on a structure product. (Contributed by Mario Carneiro, 16-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | prdsbas.p | ⊢ 𝑃 = ( 𝑆 Xs 𝑅 ) | |
| prdsbas.s | ⊢ ( 𝜑 → 𝑆 ∈ 𝑉 ) | ||
| prdsbas.r | ⊢ ( 𝜑 → 𝑅 ∈ 𝑊 ) | ||
| prdsbas.b | ⊢ 𝐵 = ( Base ‘ 𝑃 ) | ||
| prdsbas.i | ⊢ ( 𝜑 → dom 𝑅 = 𝐼 ) | ||
| prdsle.l | ⊢ ≤ = ( le ‘ 𝑃 ) | ||
| Assertion | prdsless | ⊢ ( 𝜑 → ≤ ⊆ ( 𝐵 × 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prdsbas.p | ⊢ 𝑃 = ( 𝑆 Xs 𝑅 ) | |
| 2 | prdsbas.s | ⊢ ( 𝜑 → 𝑆 ∈ 𝑉 ) | |
| 3 | prdsbas.r | ⊢ ( 𝜑 → 𝑅 ∈ 𝑊 ) | |
| 4 | prdsbas.b | ⊢ 𝐵 = ( Base ‘ 𝑃 ) | |
| 5 | prdsbas.i | ⊢ ( 𝜑 → dom 𝑅 = 𝐼 ) | |
| 6 | prdsle.l | ⊢ ≤ = ( le ‘ 𝑃 ) | |
| 7 | 1 2 3 4 5 6 | prdsle | ⊢ ( 𝜑 → ≤ = { 〈 𝑓 , 𝑔 〉 ∣ ( { 𝑓 , 𝑔 } ⊆ 𝐵 ∧ ∀ 𝑥 ∈ 𝐼 ( 𝑓 ‘ 𝑥 ) ( le ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) } ) |
| 8 | vex | ⊢ 𝑓 ∈ V | |
| 9 | vex | ⊢ 𝑔 ∈ V | |
| 10 | 8 9 | prss | ⊢ ( ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ↔ { 𝑓 , 𝑔 } ⊆ 𝐵 ) |
| 11 | 10 | anbi1i | ⊢ ( ( ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ∧ ∀ 𝑥 ∈ 𝐼 ( 𝑓 ‘ 𝑥 ) ( le ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ↔ ( { 𝑓 , 𝑔 } ⊆ 𝐵 ∧ ∀ 𝑥 ∈ 𝐼 ( 𝑓 ‘ 𝑥 ) ( le ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) |
| 12 | 11 | opabbii | ⊢ { 〈 𝑓 , 𝑔 〉 ∣ ( ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ∧ ∀ 𝑥 ∈ 𝐼 ( 𝑓 ‘ 𝑥 ) ( le ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) } = { 〈 𝑓 , 𝑔 〉 ∣ ( { 𝑓 , 𝑔 } ⊆ 𝐵 ∧ ∀ 𝑥 ∈ 𝐼 ( 𝑓 ‘ 𝑥 ) ( le ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) } |
| 13 | opabssxp | ⊢ { 〈 𝑓 , 𝑔 〉 ∣ ( ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ∧ ∀ 𝑥 ∈ 𝐼 ( 𝑓 ‘ 𝑥 ) ( le ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) } ⊆ ( 𝐵 × 𝐵 ) | |
| 14 | 12 13 | eqsstrri | ⊢ { 〈 𝑓 , 𝑔 〉 ∣ ( { 𝑓 , 𝑔 } ⊆ 𝐵 ∧ ∀ 𝑥 ∈ 𝐼 ( 𝑓 ‘ 𝑥 ) ( le ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) } ⊆ ( 𝐵 × 𝐵 ) |
| 15 | 7 14 | eqsstrdi | ⊢ ( 𝜑 → ≤ ⊆ ( 𝐵 × 𝐵 ) ) |