This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Closure of the order relation on a structure product. (Contributed by Mario Carneiro, 16-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | prdsbas.p | |- P = ( S Xs_ R ) |
|
| prdsbas.s | |- ( ph -> S e. V ) |
||
| prdsbas.r | |- ( ph -> R e. W ) |
||
| prdsbas.b | |- B = ( Base ` P ) |
||
| prdsbas.i | |- ( ph -> dom R = I ) |
||
| prdsle.l | |- .<_ = ( le ` P ) |
||
| Assertion | prdsless | |- ( ph -> .<_ C_ ( B X. B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prdsbas.p | |- P = ( S Xs_ R ) |
|
| 2 | prdsbas.s | |- ( ph -> S e. V ) |
|
| 3 | prdsbas.r | |- ( ph -> R e. W ) |
|
| 4 | prdsbas.b | |- B = ( Base ` P ) |
|
| 5 | prdsbas.i | |- ( ph -> dom R = I ) |
|
| 6 | prdsle.l | |- .<_ = ( le ` P ) |
|
| 7 | 1 2 3 4 5 6 | prdsle | |- ( ph -> .<_ = { <. f , g >. | ( { f , g } C_ B /\ A. x e. I ( f ` x ) ( le ` ( R ` x ) ) ( g ` x ) ) } ) |
| 8 | vex | |- f e. _V |
|
| 9 | vex | |- g e. _V |
|
| 10 | 8 9 | prss | |- ( ( f e. B /\ g e. B ) <-> { f , g } C_ B ) |
| 11 | 10 | anbi1i | |- ( ( ( f e. B /\ g e. B ) /\ A. x e. I ( f ` x ) ( le ` ( R ` x ) ) ( g ` x ) ) <-> ( { f , g } C_ B /\ A. x e. I ( f ` x ) ( le ` ( R ` x ) ) ( g ` x ) ) ) |
| 12 | 11 | opabbii | |- { <. f , g >. | ( ( f e. B /\ g e. B ) /\ A. x e. I ( f ` x ) ( le ` ( R ` x ) ) ( g ` x ) ) } = { <. f , g >. | ( { f , g } C_ B /\ A. x e. I ( f ` x ) ( le ` ( R ` x ) ) ( g ` x ) ) } |
| 13 | opabssxp | |- { <. f , g >. | ( ( f e. B /\ g e. B ) /\ A. x e. I ( f ` x ) ( le ` ( R ` x ) ) ( g ` x ) ) } C_ ( B X. B ) |
|
| 14 | 12 13 | eqsstrri | |- { <. f , g >. | ( { f , g } C_ B /\ A. x e. I ( f ` x ) ( le ` ( R ` x ) ) ( g ` x ) ) } C_ ( B X. B ) |
| 15 | 7 14 | eqsstrdi | |- ( ph -> .<_ C_ ( B X. B ) ) |